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MoEClust-package MoEClust: Gaussian Parsimonious Clustering Models with Covari-
ates and a Noise Component

Description

Clustering via parsimonious Gaussian Mixtures of Experts using the MoEClust models introduced
by Murphy and Murphy (2020) <doi:10.1007/s11634019003738>. This package fits finite Gaus-
sian mixture models with gating and/or expert network covariates using a range of parsimonious
covariance parameterisations from the GPCM family via the EM/CEM algorithm. Visualisation of
the results of such models using generalised pairs plots and the inclusion of an additional noise
component is also facilitated.

Usage

The most important function in the MoEClust package is: MoE_clust, for fitting the model via
EM/CEM with gating and/or expert network covariates, supplied via formula interfaces.

MoE_compare is provided for conducting model selection between different results from MoE_clust
using different covariate combinations &/or initialisation strategies, etc.

MoE_stepwise is provided for conducting a greedy forward stepwise search to identify the op-
timal model in terms of the number of components, GPCM covariance type, and the subsets of
gating/expert network covariates.

MoE_control allows supplying additional arguments to MoE_clust and MoE_stepwise which gov-
ern, among other things, controls on the inclusion of an additional noise component and controls on
the initialisation of the allocations for the EM/CEM algorithm.

A dedicated plotting function (plot.MoEClust) exists for visualising the results using generalised
pairs plots, for examining the gating network, and/or log-likelihood, and/or clustering uncertainties,
and/or similarity matrix, and/or graphing model selection criteria values. The generalised pairs plots
(MoE_gpairs) visualise all pairwise relationships between clustered response variables and associ-
ated continuous, categorical, and/or ordinal covariates in the gating &/or expert networks, coloured
according to the MAP classification, and also give the marginal distributions of each variable (incl.
the covariates) along the diagonal.

An as.Mclust method is provided to coerce the output of class "MoEClust" from MoE_clust to
the "Mclust" class, to facilitate use of plotting and other functions for the "Mclust" class within
the mclust package. As per mclust, MoEClust also facilitates modelling with an additional noise
component (with or without the mixing proportion for the noise component depending on covari-
ates).

Finally, a predict method is provided for predicting the fitted response and probability of cluster
membership (and by extension the MAP classification) for new data, in the form of new covariates
and new response data, or new covariates only.

Other functions also exist, e.g. MoE_crit, MoE_dens, MoE_estep, MoE_compare, and aitken,
which are all used within MoE_clust but are nonetheless made available for standalone use.

The package also contains two data sets: ais and CO2data.

https://doi.org/10.1007/s11634-019-00373-8
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Details

Type: Package

Package: MoEClust

Version: 1.5.2

Date: 2023-12-10 (this version), 2017-11-28 (original release)

Licence: GPL (>= 3)

See Also

Further details and examples are given in the associated vignette document:
vignette("MoEClust", package = "MoEClust")

Author(s)

Keefe Murphy [aut, cre], Thomas Brendan Murphy [ctb]

Maintainer: Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

See Also

Useful links:

• https://cran.r-project.org/package=MoEClust

• Report bugs at https://github.com/Keefe-Murphy/MoEClust

Examples

data(ais)

# Fit two sets of models
res1 <- MoE_clust(ais[,3:7], G=2, gating= ~ BMI, expert= ~ sex,

modelNames=c("VEE", "EVE", "VVE"), network.data=ais)
res2 <- MoE_clust(ais[,3:7], G=2, equalPro=TRUE, expert= ~ sex,

modelNames=c("VEE", "EVE", "VVE"), network.data=ais)

# Compare the best model from each set of results
(comp <- MoE_compare(res1, res2, optimal.only=TRUE))

# Produce a plot for the optimal model
plot(comp$optimal, what="gpairs")

# Summarise its classification table, component parameters, and gating/expert networks
summary(comp$optimal, classification=TRUE, parameters=TRUE, networks=TRUE)

https://doi.org/10.1007/s11634-019-00373-8
https://cran.r-project.org/package=MoEClust
https://github.com/Keefe-Murphy/MoEClust
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data(CO2data)
CO2 <- CO2data$CO2
GNP <- CO2data$GNP

# Fit a range of models
m1 <- MoE_clust(CO2, G=1:3)
m2 <- MoE_clust(CO2, G=2:3, gating= ~ GNP)
m3 <- MoE_clust(CO2, G=1:3, expert= ~ GNP)
m4 <- MoE_clust(CO2, G=2:3, gating= ~ GNP, expert= ~ GNP)
m5 <- MoE_clust(CO2, G=2:3, equalPro=TRUE)
m6 <- MoE_clust(CO2, G=2:3, expert= ~ GNP, equalPro=TRUE)

# Extract the model with highest BIC
(comp <- MoE_compare(m1, m2, m3, m4, m5, m6, criterion="bic"))

# See if a better model can be found using greedy forward stepwise selection
# Conduct a stepwise search on the same data
(mod1 <- MoE_stepwise(CO2, CO2data[,"GNP", drop=FALSE]))

# Conduct another stepwise search considering models with a noise component
(mod2 <- MoE_stepwise(CO2, CO2data[,"GNP", drop=FALSE], noise=TRUE))

# Compare all sets of results to choose the optimal model
(best <- MoE_compare(mod1, mod2, comp, pick=1)$optimal)

ais Australian Institute of Sport data

Description

Data on 102 male and 100 female athletes collected at the Australian Institute of Sport, courtesy of
Richard Telford and Ross Cunningham.

Usage

data(ais)

Format

A data frame with 202 observations on the following 13 variables:

sex categorical, levels = female, male

sport categorical, levels = B_Ball, Field, Gym, Netball, Row, Swim, T_400m, Tennis, T_Sprnt,
W_Polo

RCC red cell count (numeric)

WCC white cell count (numeric)

Hc Hematocrit (numeric)



6 aitken

Hg Hemoglobin (numeric)
Fe plasma ferritin concentration (numeric)
BMI body mass index: Wt/(Ht)^2 (numeric)
SSF sum of skin folds (numeric)
Bfat body fat percentage (numeric)
LBM lean body mass (numeric)
Ht height, cm (numeric)
Wt weight, kg (numeric)

Details

The data have been made publicly available in connection with the book by Cook and Weisberg
(1994).

References

Cook, R. D. and Weisberg, S. (1994), An Introduction to Regression Graphics. Volume 405 of Wiley
Series in Probability and Statistics, New York, NY, USA: John Wiley & Sons.

Examples

data(ais, package="MoEClust")
pairs(ais[,c(3:7)], col=as.numeric(ais$sex), main = "AIS data")
apply(ais[,c(3:7)], 2, summary)

aitken Aitken Acceleration

Description

Calculates the Aitken acceleration estimate of the final converged maximised log-likelihood under
the EM/CEM framework.

Usage

aitken(loglik)

Arguments

loglik A vector of three consecutive log-likelihood values. These three values should
be in ascending order, though this is not checked.

Details

The final converged maximised log-likelihood can be used to determine convergence of the EM/CEM
algorithm within MoE_clust, i.e. by checking whether the absolute difference between the previous
log-likelihood estimate and the final converged maximised log-likelihood estimate is less than some
tolerance.
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Value

A list with the following named components:

ll The most current estimate of the log-likelihood, i.e. loglik[3].

linf The most current estimate of the final converged maximised log-likelihood.

a The Aitken acceleration value where typically 0 <= a <= 1. When a < 0, a nu-
merical issue or bug has occurred; when a > 1, the algorithm is accelerating and
should not be stopped.

ldiff The difference between linf and the previous estimate of the log-likelihood, i.e.
loglik[2], in accordance with McNicholas et al. (2010).

When the "aitken" method is employed within MoE_clust (via MoE_control), ll at convergence
gives the log-likelihood achieved by the estimated parameters, while linf at convergence estimates
the log-likelihood that would be achieved after an infinite number of EM/CEM iterations.

Note

Within MoE_clust, as specified by the stopping argument of MoE_control, "aitken" is the de-
fault method used to assess convergence. The other option monitors the "relative" change in
log-likelihood against some tolerance. See MoE_control.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Boehning, D., Dietz, E., Schaub, R., Schlattmann, P. and Lindsay, B. G. (1994). The distribution of
the likelihood ratio for mixtures of densities from the one-parameter exponential family. Annals of
the Institute of Statistical Mathematics, 46(2): 373-388.

McNicholas, P. D., Murphy, T. B., McDaid, A. F. and Frost, D. (2010). Serial and parallel imple-
mentations of model-based clustering via parsimonious Gaussian mixture models. Computational
Statistics & Data Analysis, 54(3): 711-723.

See Also

MoE_control

Examples

(a1 <- aitken(-c(449.61534, 442.84221, 436.58999)))
a1$ldiff < 1e-05 # FALSE
(a2 <- aitken(-c(442.84221, 436.58999, 436.58998)))
a2$ldiff < 1e-05 # FALSE
(a3 <- aitken(-c(436.58999, 436.58998, 436.58998)))
a3$ldiff < 1e-05 # TRUE
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as.Mclust Convert MoEClust objects to the Mclust class

Description

Converts an object of class "MoEClust" generated by MoE_clust and converts it to an object of
class "Mclust" as generated by fitting Mclust, to facilitate use of plotting and other functions for
the "Mclust" class within the mclust package. Some caution is advised when converting models
with gating &/or expert covariates (see Note below).

Usage

## S3 method for class 'MoEClust'
as.Mclust(x,

expert.covar = TRUE,
signif = 0L,
...)

Arguments

x An object of class "MoEClust" generated by MoE_clust or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

expert.covar Logical (defaults to TRUE) governing whether the extra variability in the com-
ponent means is added to the MVN ellipses corresponding to the component
covariance matrices in the presence of expert network covariates. See the func-
tion expert_covar.

signif Significance level for outlier removal. Must be a single number in the interval
[0, 1). Corresponds to the percentage of data to be considered extreme and
therefore removed (half of signif at each endpoint, on a column-wise basis).
The default, 0, corresponds to no outlier removal. Only invoke this argument as
an aid to visualisation via plot.Mclust.

... Further arguments to be passed to other methods.

Details

Of course, the user is always encouraged to use the dedicated plot function for objects of the
"MoEClust" class instead, but calling plot after converting via as.Mclust can be particularly
useful for univariate mixtures.

In the presence of expert network covariates, the component-specific covariance matrices are (by de-
fault, via the argument expert.covar) modified for plotting purposes via the function expert_covar,
in order to account for the extra variability of the means, usually resulting in bigger shapes & sizes
for the MVN ellipses.

The signif argument is intended only to aid visualisation via plot.Mclust, as plots therein can be
sensitive to outliers, particularly with regard to axis limits.
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Value

An object of class "Mclust". See methods(class="Mclust") for a (non-exhaustive) list of func-
tions which can be applied to this class.

Note

Mixing proportions are averaged over observations in components in the presence of gating network
covariates during the coercion.

Plots may be quite misleading in the presence of gating &/or (especially) expert network covariates
when the what argument is "density" within plot.Mclust; users are strongly encouraged to use
MoE_gpairs with response.type="density" instead.

Predictions (via predict.Mclust) will also be misleading in the presence of covariates of any kind
when newdata is supplied; thus, users are strongly encouraged to use predict.MoEClust instead.

The functions clustCombi and clustCombiOptim can be safely used (provided as.Mclust(x) is
supplied as the object argument to clustCombi), as they only rely on x$z and x$G only. See the
examples below.

Users may expect MoEClust models with no covariates of any kind to be identical to models fitted
via mclust, but this is not necessarily true: see the MoE_control argument asMclust.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association, 97(458): 611-631.

Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016). mclust 5: clustering, classification and
density estimation using Gaussian finite mixture models. The R Journal, 8(1): 289-317.

See Also

Mclust, plot.Mclust, MoE_clust, plot.MoEClust, expert_covar, MoE_control

Examples

# library(mclust)

# Fit a gating network mixture of experts model to the ais data
# data(ais)
# mod <- MoE_clust(ais[,3:7], G=1:9, gating= ~ BMI + sex, network.data=ais)

# Convert to the "Mclust" class and examine the classification
# mod2 <- as.Mclust(mod)
# plot(mod2, what="classification")

# Examine the uncertainty
# plot(mod2, what="uncertainty")
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# Return the optimal number of clusters according to entropy
# combi <- mclust::clustCombi(object=mod2)
# optim <- mclust::clustCombiOptim(object=combi)
# table(mod2$classification, ais$sex)
# table(optim$cluster.combi, ais$sex)

# While we could have just used plot.MoEClust above,
# plot.Mclust is especially useful for univariate data
# data(CO2data)
# res <- MoE_clust(CO2data$CO2, G=3, equalPro=TRUE, expert = ~ GNP, network.data=CO2data)
# plot(as.Mclust(res))

CO2data GNP and CO2 Data Set

Description

This data set gives the gross national product (GNP) per capita in 1996 for various countries as well
as their estimated carbon dioxide (CO2) emission per capita for the same year.

Usage

data(CO2data)

Format

This data frame consists of 28 countries and the following variables:

GNP The gross product per capita in 1996.

CO2 The estimated carbon dioxide emission per capita in 1996.

country An abbreviation pertaining to the country measures (e.g. "GRC" = Greece and "CH" =
Switzerland).

References

Hurn, M., Justel, A. and Robert, C. P. (2003) Estimating mixtures of regressions, Journal of Com-
putational and Graphical Statistics, 12(1): 55-79.

Examples

data(CO2data, package="MoEClust")
plot(CO2data$GNP, CO2data$CO2, type="n", ylab=expression('CO'[2]))
text(CO2data$GNP, CO2data$CO2, CO2data$country)
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drop_constants Drop constant variables from a formula

Description

Drops constant variables from the RHS of a formula taking the data set (dat), the formula (formula),
and an optional subset vector (sub) as arguments.

Usage

drop_constants(dat,
formula,
sub = NULL)

Arguments

dat A data.frame where rows correspond to observations and columns correspond
to variables. Ideally column names should be present.

formula An object of class "formula": a symbolic description of the model to be fitted.
Variables in the formula not present in the columns of dat will automatically
be discarded. The formula may include interactions, transformations, or higher
order terms: the latter must be specified explicitly using the AsIs operator (I).

sub An optional vector specifying a subset of observations to be used in the fitting
process.

Value

The updated formula with constant variables removed.

Note

Formulas with and without intercepts are accommodated.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

drop_levels, I
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Examples

data(ais)
hema <- as.matrix(ais[,3:7])
sex <- ais$sex
BMI <- ais$BMI

# Set up a no-intercept regression formula with constant column 'sex'
form1 <- as.formula(hema ~ sex + BMI + I(BMI^2) - 1)
sub <- ais$sex == "male"

# Try fitting a linear model
mod1 <- try(lm(form1, data=ais, subset=sub), silent=TRUE)
inherits(mod1, "try-error") # TRUE

# Remove redundant variables from formula & try again
form2 <- drop_constants(ais, form1, sub)
mod2 <- try(lm(form2, data=ais, subset=sub), silent=TRUE)
inherits(mod2, "try-error") # FALSE

drop_levels Drop unused factor levels to predict from unseen data

Description

Drops unseen factor levels in newdata for which predictions are required from a lm or multinom
model fit.

Usage

drop_levels(fit,
newdata)

Arguments

fit A fitted lm or multinom model.

newdata A data.frame containing variables with which to predict.

Value

A data.frame like newdata with unseen factor levels replaced by NA.

Note

This function is so far untested for models other than lm or multinom, though it may still work for
other classes.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>
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See Also

drop_constants

Examples

data(ais)
hema <- as.matrix(ais[,3:7])
BMI <- ais$BMI
sport <- ais$sport
sub <- ais$sport != "Row"

# Fit a linear model
mod <- lm(hema ~ BMI + sport, data=ais, subset=sub)

# Make predictions
pred1 <- try(predict(mod, newdata=ais), silent=TRUE)
inherits(pred1, "try-error") #TRUE

# Remove unused levels and try again
pred2 <- try(predict(mod, newdata=drop_levels(mod, ais)), silent=TRUE)
inherits(pred2, "try-error") #FALSE
anyNA(pred2) #TRUE

expert_covar Account for extra variability in covariance matrices with expert co-
variates

Description

In the presence of expert network covariates, this helper function modifies the component-specific
covariance matrices of a "MoEClust" object, in order to account for the extra variability due to the
component means, usually resulting in bigger shapes & sizes for the MVN ellipses in MoE_gpairs
plots. The function also works for univariate response data.

Usage

expert_covar(x,
weighted = TRUE,
...)

Arguments

x An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

weighted A logical indicating whether the estimated cluster membership probabilities
should be used to provide a weighted estimate of the variability due to the com-
ponent means. Defaults to TRUE. The option weighted=FALSE is provided only
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so that previous behaviour under earlier versions of this package can be recov-
ered but is otherwise not recommended.

... Catches unused arguments.

Details

This function is used internally by MoE_gpairs, plot.MoEClust(x, what="gpairs"), and as.Mclust,
for visualisation purposes.

Value

The variance component only from the parameters list from the output of a call to MoE_clust,
modified accordingly.

Note

The modelName of the resulting variance object may not correspond to the model name of the
"MoEClust" object, in particular scale, shape, &/or orientation may no longer be constrained
across clusters, and cholsigma, if it was in the input, will be discarded from the output. Usually,
the modelName of the transformed variance object will be "VVV" for multivariate data and "V" for
univariate data, but not always. Furthermore, the output will drop certain row and column names
from the output.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

See Also

MoE_clust, MoE_gpairs, plot.MoEClust, as.Mclust

Examples

data(ais)
res <- MoE_clust(ais[,3:7], G=2, gating= ~ 1, expert= ~ sex,

network.data=ais, modelNames="EEE", equalPro=TRUE)

# Extract the variance object
res$parameters$variance

# Modify the variance object
expert_covar(res)

https://doi.org/10.1007/s11634-019-00373-8
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FARI Compute the Frobenius (adjusted) Rand index

Description

This function efficiently computes fuzzy generalisations of the Rand and adjusted Rand indices for
comparing two partitions, allowing either or both partitions to be "soft" or "hard".

Usage

FARI(z1,
z2)

Arguments

z1, z2 A n ∗ G matrix representing a hard partition (all entries 0 or 1) or soft cluster-
membership probabilities.

Details

If z1 &/or z2 is supplied as a vector of cluster labels, they will be coerced to an appropriate matrix
via unmap.

Value

A list with the following named components:

FRI Measure of Frobenius Rand index between z1 and z2.

FARI Measure of Frobenius adjusted Rand index between z1 and z2.

Note

The number of columns of the matrices z1 and z2 need not be equal.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Andrew, J. L., Browne, R., and Hvingelby, C. D. (2022). On assessments of agreement between
fuzzy partitions. Journal of Classification, 39(2): 326-342.

See Also

unmap
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Examples

m1 <- MoE_clust(ais[,3:7], G=2, modelNames="EVE",
gating=~BMI, expert=~sex, network.data=ais)

m2 <- MoE_clust(ais[,3:7], G=2, modelNames="EVE",
equalPro=TRUE, expert=~sex, network.data=ais)

m3 <- MoE_clust(ais[,3:7], G=2, modelNames="VEE", algo="CEM", tau0=0.1)

# FARI between two soft partitions
FARI(m1$z, m2$z)
# FARI between soft and hard partitions
FARI(m1$z, m3$z)
# FARI between soft partition and hard classification
FARI(m1$z, m2$classification)
# FARI between hard partition and hard classification
FARI(m3$z, m3$classification)
# FARI between hard classification and hard classification
FARI(m1$classification, m2$classification)

force_posiDiag Force diagonal elements of a triangular matrix to be positive

Description

This function ensures that the triangular matrix in a QR (or other) decomposition has positive values
along its diagonal.

Usage

force_posiDiag(x)

Arguments

x A matrix, which must be either upper-triangular or lower-triangular.

Value

An upper or lower triangular matrix with positive diagonal entries such that the matrix is still a valid
decomposition of the matrix the input x is a decomposition of.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>
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Examples

data(ais)
res <- MoE_clust(ais[,3:7], G=3, modelNames="EEE")
sig <- res$parameters$variance
a <- force_posiDiag(sig$cholSigma)
b <- chol(sig$Sigma)
all.equal(a, b) #TRUE
all.equal(crossprod(a), sig$Sigma) #TRUE
all.equal(crossprod(b), sig$Sigma) #TRUE

MoE_AvePP Average posterior probabilities of a fitted MoEClust model

Description

Calculates the per-component average posterior probabilities of a fitted MoEClust model.

Usage

MoE_AvePP(x,
group = TRUE)

Arguments

x An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with gating and/or expert
covariates and/or a noise component are facilitated here too.

group A logical indicating whether the average posterior probabilities should be com-
puted per component. Defaults to TRUE.

Details

When group=TRUE, this function calculates AvePP, the average posterior probabilities of member-
ship for each component for the observations assigned to that component via MAP probabilities.
Otherwise, an overall measure of clustering certainty is returned.

Value

When group=TRUE, a named vector of numbers, of length equal to the number of components (G),
in the range [1/G,1], such that larger values indicate clearer separation of the clusters. Note that
G=x$G for models without a noise component and G=x$G + 1 for models with a noise component.
When group=FALSE, a single number in the same range is returned.

Note

This function will always return values of 1 for all components for models fitted using the "CEM"
algorithm (see MoE_control), or models with only one component.
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Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

See Also

MoE_clust, MoE_control, MoE_entropy

Examples

data(ais)
res <- MoE_clust(ais[,3:7], G=3, gating= ~ BMI + sex,

modelNames="EEE", network.data=ais)

# Calculate the AvePP per component
MoE_AvePP(res)

# Calculate an overall measure of clustering certainty
MoE_AvePP(res, group=FALSE)

MoE_clust MoEClust: Gaussian Parsimonious Clustering Models with Covari-
ates and a Noise Component

Description

Fits MoEClust models: Gaussian Mixture of Experts models with GPCM/mclust-family covariance
structures. In other words, performs model-based clustering via the EM/CEM algorithm where
covariates are allowed to enter neither, either, or both the mixing proportions (gating network)
and/or component densities (expert network) of a Gaussian Parsimonious Clustering Model, with
or without an additional noise component. Additional arguments are available via the function
MoE_control, including the specification of a noise component, controls on the initialisation of the
algorithm, and more.

Usage

MoE_clust(data,
G = 1:9,
modelNames = NULL,
gating = ~1,
expert = ~1,
control = MoE_control(...),
network.data = NULL,

https://doi.org/10.1007/s11634-019-00373-8
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...)

## S3 method for class 'MoEClust'
print(x,

digits = 3L,
...)

## S3 method for class 'MoEClust'
summary(object,

classification = TRUE,
parameters = FALSE,
networks = FALSE,
...)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables
are not allowed. If a matrix or data frame, rows correspond to observations and
columns correspond to variables.

G An integer vector specifying the number(s) of mixture components (clusters)
to fit. Defaults to G=1:9. Must be a strictly positive integer, unless a noise
component is included in the estimation, in which case G=0 is allowed and also
included by default. (see MoE_control).

modelNames A vector of character strings indicating the models to be fitted in the EM/CEM
phase of clustering. With n observations and d variables, the defaults are:

for univariate data c("E", "V")
for multivariate data n > d mclust.options("emModelNames")
for high-dimensional multivariate data n ≤ d c("EII", "VII", "EEI", "EVI", "VEI", "VVI")

For single-component models these options reduce to:

for univariate data "E"
for multivariate data n > d c("EII", "EEI", "EEE")
for high-dimensional multivariate data n ≤ d c("EII", "EEI")

For zero-component models with a noise component only the "E" and "EII"
models will be fitted for univariate and multivariate data, respectively, although
this is clearly for naming consistency only. The help file for mclustModelNames
further describes the available models (though the "X" in the single-component
models will be coerced to "E" if supplied that way). For single-component
models, other model names equivalent to those above can be supplied, but will
be coerced to those above.

gating A formula for determining the model matrix for the multinomial logistic regres-
sion in the gating network when fixed covariates enter the mixing proportions.
Defaults to ~1, i.e. no covariates. This will be ignored where G=1. Continuous,
categorical, and/or ordinal covariates are allowed. Logical covariates will be
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coerced to factors. Interactions, transformations, and higher order terms are per-
mitted: the latter must be specified explicitly using the AsIs operator (I). The
specification of the LHS of the formula is ignored. Intercept terms are included
by default.

expert A formula for determining the model matrix for the (multivariate) WLS in the
expert network when fixed covariates are included in the component densities.
Defaults to ~1, i.e. no covariates. Continuous, categorical, and/or ordinal co-
variates are allowed. Logical covariates will be coerced to factors. Interactions,
transformations, and higher order terms are permitted: the latter must be spec-
ified explicitly using the AsIs operator (I). The specification of the LHS of the
formula is ignored. Intercept terms are included by default.

control A list of control parameters for the EM/CEM and other aspects of the algorithm.
The defaults are set by a call to MoE_control. In particular, arguments pertain-
ing to the inclusion of an additional noise component are documented here.

network.data An optional data frame (or a matrix with named columns) in which to look for
the covariates in the gating &/or expert network formulas, if any. If not found
in network.data, any supplied gating &/or expert covariates are taken from
the environment from which MoE_clust is called. Try to ensure the names of
variables in network.data do not match any of those in data.

... An alternative means of passing control parameters directly via the named ar-
guments of MoE_control. Do not pass the output from a call to MoE_control
here! This argument is only relevant for the MoE_clust function and will be
ignored for the associated print and summary functions.

x, object, digits, classification, parameters, networks
Arguments required for the print and summary functions: x and object are
objects of class "MoEClust" resulting from a call to MoE_clust, while digits
gives the number of decimal places to round to for printing purposes (defaults
to 3). classification, parameters, and networks are logicals which govern
whether a table of the MAP classification of observations, the mixture compo-
nent parameters, and the gating/expert network coefficients are printed, respec-
tively.

Details

The function effectively allows 6 different types of Gaussian Mixture of Experts model (as well as
the different models in the GPCM/mclust family, for each): i) the standard finite Gaussian mixture
with no covariates, ii) fixed covariates only in the gating network, iii) fixed covariates only in
the expert network, iv) the full Mixture of Experts model with fixed covariates entering both the
mixing proportions and component densities. By constraining the mixing proportions to be equal
(see equalPro in MoE_control) two extra special cases are facilitated when gating covariates are
excluded.

Note that having the same covariates in both networks is allowed. So too are interactions, trans-
formations, and higher order terms (see formula): the latter must be specified explicitly using the
AsIs operator (I). Covariates can be continuous, categorical, logical, or ordinal, but the response
must always be continuous.

While model selection in terms of choosing the optimal number of components and the GPCM/mclust
model type is performed within MoE_clust, using one of the criterion options within MoE_control,
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choosing between multiple fits with different combinations of covariates or different initialisation
settings can be done by supplying objects of class "MoEClust" to MoE_compare.

Value

A list (of class "MoEClust") with the following named entries, mostly corresponding to the chosen
optimal model (as determined by the criterion within MoE_control):

call The matched call.

data The input data, as a data.frame.

modelName A character string denoting the GPCM/mclust model type at which the optimal
criterion occurs.

n The number of observations in the data.

d The dimension of the data.

G The optimal number of mixture components according to criterion.

BIC A matrix of all BIC values with length{G} rows and length(modelNames)
columns. May include missing entries: NA represents models which were not
visited, -Inf represents models which were terminated due to error, for which a
log-likelihood could not be estimated. Inherits the classes "MoECriterion" and
"mclustBIC", for which dedicated print, summary, and plot methods exist,
respectively.

ICL A matrix of all ICL values with length{G} rows and length(modelNames)
columns. May include missing entries: NA represents models which were not
visited, -Inf represents models which were terminated due to error, for which a
log-likelihood could not be estimated. Inherits the classes "MoECriterion" and
"mclustICL", for which dedicated print, summary, and plot methods exist,
respectively.

AIC A matrix of all AIC values with length{G} rows and length(modelNames)
columns. May include missing entries: NA represents models which were not
visited, -Inf represents models which were terminated due to error, for which a
log-likelihood could not be estimated. Inherits the classes "MoECriterion" and
"mclustAIC", for which dedicated print, summary, and plot methods exist,
respectively.

bic The BIC value corresponding to the optimal model. May not necessarily be the
optimal BIC.

icl The ICL value corresponding to the optimal model. May not necessarily be the
optimal ICL.

aic The AIC value corresponding to the optimal model. May not necessarily be the
optimal AIC.

gating An object of class "MoE_gating" (for which dedicated print, summary, and
predict methods exist) and either "multinom" or "glm" (only for single-component
models or noise-only models) giving the multinom regression coefficients of the
gating network. If gating covariates were NOT supplied (or the best model
has just one component), this corresponds to a RHS of ~1, otherwise the sup-
plied gating formula. As such, a fitted gating network is always returned even



22 MoE_clust

in the absence of supplied covariates or clusters. The number of parameters to
penalise by for MoE_crit is given by length(coef(gating)), and the gating
formula used is stored here as an attribute. If there is a noise component (and
the option noise.gate=TRUE is invoked), its coefficients are those for the last
component. Users are cautioned against making inferences about statistical
significance from summaries of the coefficients in the gating network.

expert An object of class "MoE_expert" (for which dedicated print, summary, and
predict methods exist) and "lm" giving the (multivariate) WLS regression co-
efficients of the expert network. If expert covariates were NOT supplied, this
corresponds to a RHS of ~1, otherwise the supplied expert formula. As such,
a fitted expert network is always returned even in the absence of supplied co-
variates. The number of parameters to penalise by for MoE_crit is given by G
* length(coef(expert[[1]])), and the expert formula used is stored here is
an attribute. Users are cautioned against making inferences about statistical
significance from summaries of the coefficients in the expert network.

LOGLIK A matrix of all maximal log-likelihood values with length{G} rows and length(modelNames)
columns. May include missing entries: NA represents models which were not
visited, -Inf represents models which were terminated due to error, for which
a log-likelihood could not be estimated. Inherits the classes "MoECriterion"
and "mclustLoglik", for which dedicated print, summary, and plot methods
exist, respectively.

loglik The vector of increasing log-likelihood values for every EM/CEM iteration un-
der the optimal model. The last element of this vector is the maximum log-
likelihood achieved by the parameters returned at convergence.

linf An asymptotic estimate of the final converged maximised log-likelihood. Re-
turned when stopping="aitken" and G > 1 (see MoE_control and aitken),
otherwise the last element of loglik is returned instead.

df The number of estimated parameters in the optimal model (i.e. the number of
’used’ degrees of freedom). Subtract this number from n to get the degrees of
freedom. The number of parameters due to the gating network, expert network,
and covariance matrices are also stored here as attributes of df.

iters The total number of EM/CEM iterations for the optimal model.

hypvol The hypervolume parameter for the noise component if required, otherwise set
to NA (see MoE_control).

parameters A list with the following named components:

pro The mixing proportions: either a vector of length G or, if gating covari-
ates were supplied, a matrix with an entry for each observation (rows) and
component (columns).

mean The means of each component. If there is more than one component, this
is a matrix whose k-th column is the mean of the k-th component of the
mixture model.
For models with expert network covariates, this is given by the posterior
mean of the fitted values, otherwise the posterior mean of the response is re-
ported. For models with expert network covariates, the observation-specific
component means can be accessed by calling predict on the expert object
above.
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variance A list of variance parameters of each component of the model. The
components of this list depend on the model type specification. See the help
file for mclustVariance for details. Also see expert_covar for an alter-
native approach to summarising the variance parameters in the presence of
expert network covariates.

Vinv The inverse of the hypervolume parameter for the noise component if re-
quired, otherwise set to NULL (see MoE_control).

z The final responsibility matrix whose [i,k]-th entry is the probability that ob-
servation i belonds to the k-th component. If there is a noise component, its
values are found in the last column.

classification The vector of cluster labels for the chosen model corresponding to z, i.e. max.col(z).
Observations belonging to the noise component, if any, will belong to compo-
nent 0.

uncertainty The uncertainty associated with the classification.

net.covs A data frame gathering the unique set of covariates used in the gating and
expert networks, if any. Will contain zero columns in the absence of gating
or expert network covariates. Supplied gating covariates will be excluded if
the optimal model has only one component. May have fewer columns than
covariates supplied via the network.data argument also, as only the included
covariates are gathered here.

resid.data In the presence of expert network covariates, this is the augmented data actually
used in the clustering at convergence, as a list of G matrices of WLS residuals
of dimension n * d. Will contain zero columns in the absence of expert network
covariates.

DF A matrix giving the numbers of estimated parameters (i.e. the number of ’used’
degrees of freedom) for all visited models, with length{G} rows and length(modelNames)
columns. Subtract these numbers from n to get the degrees of freedom. May
include missing entries: NA represents models which were not visited, -Inf rep-
resents models which were terminated due to error, for which parameters could
not be estimated. Inherits the classes "MoECriterion" and "mclustDF", for
which dedicated print, summary, and plot methods exist, respectively.

ITERS A matrix giving the total number of EM/CEM iterations for all visited models,
with length{G} rows and length(modelNames) columns. May include miss-
ing entries: NA represents models which were not visited, Inf represents models
which were terminated due to singularity/error and thus would never have con-
verged. Inherits the classes "MoECriterion" and "mclustITERS", for which
dedicated print, summary, and plot methods exist, respectively.

Dedicated plot, predict, print, and summary functions exist for objects of class "MoEClust".
The results can be coerced to the "Mclust" class to access other functions from the mclust package
via as.Mclust.

Note

Where BIC, ICL, AIC, LOGLIK, DF and ITERS contain NA entries, this corresponds to a model which
was not run; for instance a VVV model is never run for single-component models as it is equivalent
to EEE. As such, one can consider the value as not really missing, but equivalent to the EEE value.
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BIC, ICL, AIC, LOGLIK, DF and ITERS all inherit the classes "MoECriterion" and "mclustBIC",
"mclustICL", etc., for which dedicated print, summary, and plot methods exist, respectively.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density
estimation. Journal of the American Statistical Association, 97(458): 611-631.

See Also

See MoE_stepwise for identifying the optimal model and its covariates via greedy forward stepwise
selection.

MoE_control, MoE_compare, plot.MoEClust, predict.MoEClust, predict.MoE_gating, predict.MoE_expert,
as.Mclust, MoE_crit, MoE_estep, MoE_cstep, MoE_dens, mclustModelNames, mclustVariance,
expert_covar, aitken, I

Examples

data(ais)
hema <- ais[,3:7]
sex <- ais$sex
BMI <- ais$BMI

# Fit a standard finite mixture model
m1 <- MoE_clust(hema, G=2:3)

# Allow covariates to enter the mixing proportions
m2 <- MoE_clust(hema, G=2:3, gating= ~ sex + BMI)

# Allow covariates to enter the component densities
m3 <- MoE_clust(hema, G=2:3, expert= ~ sex)

# Allow covariates to enter both the gating & expert network
m4 <- MoE_clust(hema, G=2:3, gating= ~ BMI, expert= ~ sex)

# Fit an equal mixing proportion model with an expert network covariate
m5 <- MoE_clust(hema, G=2:3, expert= ~ sex + BMI, equalPro=TRUE)

# Fit models with gating covariates & an additional noise component
m6 <- MoE_clust(hema, G=2:3, tau0=0.1, gating= ~ BMI, network.data=ais)

# Extract the model with highest BIC
(comp <- MoE_compare(m1, m2, m3, m4, m5, m6, criterion="bic"))

https://doi.org/10.1007/s11634-019-00373-8
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# See if a better model can be found using greedy forward stepwise selection
(step <- MoE_stepwise(ais[,3:7], ais))
(comp <- MoE_compare(comp, step, optimal.only=TRUE))
(best <- comp$optimal)
(summ <- summary(best, classification=TRUE, parameters=TRUE, networks=TRUE))

# Examine the expert network in greater detail
# (but refrain from inferring statistical significance!)
summary(best$expert)

# Visualise the results, incl. the gating network and log-likelihood
plot(best, what="gpairs")
plot(best, what="gating") # equal mixing proportions!
plot(best, what="loglik")

# Visualise the results using the 'lattice' library
z <- factor(best$classification, labels=paste0("Cluster", seq_len(best$G)))
lattice::splom(~ hema | sex, groups=z)
lattice::splom(~ hema | z, groups=sex)

MoE_compare Choose the best MoEClust model

Description

Takes one or more sets of MoEClust models fitted by MoE_clust (or MoE_stepwise) and ranks
them according to the BIC, ICL, or AIC. It’s possible to respect the internal ranking within each
set of models, or to discard models within each set which were already deemed sub-optimal. This
function can help with model selection via exhaustive or stepwise searches.

Usage

MoE_compare(...,
criterion = c("bic", "icl", "aic"),
pick = 10L,
optimal.only = FALSE)

## S3 method for class 'MoECompare'
print(x,

index = seq_len(x$pick),
posidens = TRUE,
rerank = FALSE,
digits = 3L,
details = TRUE,
maxi = length(index),
...)
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Arguments

... One or more objects of class "MoEClust" outputted by MoE_clust. All models
must have been fit to the same data set. A single named list of such objects can
also be supplied. Additionally, objects of class "MoECompare" outputted by this
very function can also be supplied here.
This argument is only relevant for the MoE_compare function and will be ignored
for the associated print function.

criterion The criterion used to determine the ranking. Defaults to "bic".

pick The (integer) number of models to be ranked and compared. Defaults to 10L.
Will be constrained by the number of models within the "MoEClust" objects
supplied via ... if optimal.only is FALSE, otherwise constrained simply by
the number of "MoEClust" objects supplied. Setting pick=Inf is a valid way to
select all models.

optimal.only Logical indicating whether to only rank models already deemed optimal within
each "MoEClust" object (TRUE), or to allow models which were deemed subop-
timal enter the final ranking (FALSE, the default). See details.

x, index, posidens, rerank, digits, details, maxi
Arguments required for the associated print function:

x An object of class "MoECompare" resulting from a call to MoE_compare.
index A logical or numeric vector giving the indices of the rows of the table of

ranked models to print. This defaults to the full set of ranked models. It can
be useful when the table of ranked models is large to examine a subset via
this index argument, for display purposes. See rerank.

posidens A logical indicating whether models which have been flagged for
having positive log-densities should be included in the comparison (de-
faults to TRUE). Such models may correspond to spurious solutions and can
be discarded by specifying posidens=FALSE. Only relevant if any of the
"MoEClust" objects being compared were themselves run with posidens=TRUE.

rerank A logical indicating whether the ranks should be recomputed when sub-
setting using index. Defaults to FALSE. Only relevant when details=TRUE.

digits The number of decimal places to round model selection criteria to (de-
faults to 3).

details Logical indicating whether some additional details should be printed,
defaults to TRUE. Exists to facilitate MoE_stepwise printing.

maxi A number specifying the maximum number of rows/models to print. De-
faults to length(index).

Details

The purpose of this function is to conduct model selection on "MoEClust" objects, fit to the same
data set, with different combinations of gating/expert network covariates or different initialisation
settings.

Model selection will have already been performed in terms of choosing the optimal number of
components and GPCM/mclust model type within each supplied set of results, but MoE_compare
will respect the internal ranking of models when producing the final ranking if optimal.only is
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FALSE: otherwise only those models already deemed optimal within each "MoEClust" object will
be ranked.

As such if two sets of results are supplied when optimal.only is FALSE, the 1st, 2nd and 3rd best
models could all belong to the first set of results, meaning a model deemed suboptimal according
to one set of covariates could be superior to one deemed optimal under another set of covariates.

Value

A list of class "MoECompare", for which a dedicated print function exists, containing the following
elements (each of length pick, and ranked according to criterion, where appropriate):

data The name of the data set to which the models were fitted.

optimal The single optimal model (an object of class "MoEClust") among those sup-
plied, according to the chosen criterion.

pick The final number of ranked models. May be different (i.e. less than) the supplied
pick value.

MoENames The names of the supplied "MoEClust" objects.

modelNames The mclustModelNames.

G The optimal numbers of components.

df The numbers of estimated parameters.

iters The numbers of EM/CEM iterations.

bic BIC values, ranked according to criterion.

icl ICL values, ranked according to criterion.

aic AIC values, ranked according to criterion.

loglik Maximal log-likelihood values, ranked according to criterion.

gating The gating formulas.

expert The expert formulas.

algo The algorithm used for fitting the model - either "EM", "CEM", "cemEM".

equalPro Logical indicating whether mixing proportions were constrained to be equal
across components.

hypvol Hypervolume parameters for the noise component if relevant, otherwise set to
NA (see MoE_control).

noise The type of noise component fitted (if any). Only displayed if at least one of the
compared models has a noise component.

noise.gate Logical indicating whether gating covariates were allowed to influence the noise
component’s mixing proportion. Only printed for models with a noise compo-
nent, when at least one of the compared models has gating covariates.

equalNoise Logical indicating whether the mixing proportion of the noise component for
equalPro models is also equal (TRUE) or estimated (FALSE).
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Note

The criterion argument here need not comply with the criterion used for model selection within
each "MoEClust" object, but be aware that a mismatch in terms of criterion may require the
optimal model to be re-fit in order to be extracted, thereby slowing down MoE_compare.

If random starts had been used via init.z="random" the optimal model may not necessarily cor-
respond to the highest-ranking model in the presence of a criterion mismatch, due to the randomness
of the initialisation.

A dedicated print function exists for objects of class "MoECompare".

plot.MoEClust and as.Mclust can both also be called on objects of class "MoECompare".

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

See Also

See MoE_stepwise for identifying the optimal model and its covariates via greedy forward stepwise
selection.

MoE_clust, mclustModelNames, plot.MoEClust, as.Mclust

Examples

data(CO2data)
CO2 <- CO2data$CO2
GNP <- CO2data$GNP

# Fit a range of models
m1 <- MoE_clust(CO2, G=1:3)
m2 <- MoE_clust(CO2, G=2:3, gating= ~ GNP)
m3 <- MoE_clust(CO2, G=1:3, expert= ~ GNP)
m4 <- MoE_clust(CO2, G=2:3, gating= ~ GNP, expert= ~ GNP)
m5 <- MoE_clust(CO2, G=2:3, equalPro=TRUE)
m6 <- MoE_clust(CO2, G=2:3, expert= ~ GNP, equalPro=TRUE)
m7 <- MoE_clust(CO2, G=2:3, expert= ~ GNP, tau0=0.1)

# Rank only the optimal models and examine the best model
(comp <- MoE_compare(m1, m2, m3, m4, m5, m6, m7, optimal.only=TRUE))
(best <- comp$optimal)
(summ <- summary(best, classification=TRUE, parameters=TRUE, networks=TRUE))

# Examine all models visited, including those already deemed suboptimal
# Only print models with expert covariates & more than one component

https://doi.org/10.1007/s11634-019-00373-8
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comp2 <- MoE_compare(m1, m2, m3, m4, m5, m6, m7, pick=Inf)
print(comp2, index=comp2$expert != "None" & comp2$G > 1)

# Conduct a stepwise search on the same data
(mod1 <- MoE_stepwise(CO2, GNP))

# Conduct another stepwise search considering models with a noise component
(mod2 <- MoE_stepwise(CO2, GNP, noise=TRUE))

# Compare both sets of results to choose the optimal model
(best <- MoE_compare(mod1, mod2, optimal.only=TRUE)$optimal)

MoE_control Set control values for use with MoEClust

Description

Supplies a list of arguments (with defaults) for use with MoE_clust.

Usage

MoE_control(init.z = c("hc", "quantile", "kmeans", "mclust", "random", "list"),
noise.args = list(...),
asMclust = FALSE,
equalPro = FALSE,
exp.init = list(...),
algo = c("EM", "CEM", "cemEM"),
criterion = c("bic", "icl", "aic"),
stopping = c("aitken", "relative"),
z.list = NULL,
nstarts = 1L,
eps = .Machine$double.eps,
tol = c(1e-05, sqrt(.Machine$double.eps), 1e-08),
itmax = c(.Machine$integer.max, .Machine$integer.max, 1000L),
hc.args = list(...),
km.args = list(...),
posidens = TRUE,
init.crit = c("bic", "icl"),
warn.it = 0L,
MaxNWts = 1000L,
verbose = interactive(),
...)

Arguments

init.z The method used to initialise the cluster labels for the non-noise components.
Defaults to "hc", i.e. model-based agglomerative hierarchical clustering tree
as per hc, for multivariate data (see hc.args), or "quantile"-based clustering



30 MoE_control

as per quant_clust for univariate data (unless there are expert network co-
variates incorporated via exp.init$joint &/or exp.init$clustMD, in which
case the default is again "hc"). The "quantile" option is thus only avail-
able for univariate data when expert network covariates are not incorporated via
exp.init$joint &/or exp.init$clustMD, or when expert network covariates
are not supplied.
Other options include "kmeans" (see km.args), "random" initialisation (see
nstarts below), a user-supplied "list", and a full run of Mclust (itself ini-
tialised via a model-based agglomerative hierarchical clustering tree, again see
hc.args), although this last option "mclust" will be coerced to "hc" if there
are no gating &/or expert covariates within MoE_clust (in order to better re-
produce Mclust output).
When init.z="list", exp.init$clustMD is forced to FALSE; otherwise, when
isTRUE(exp.init$clustMD) and the clustMD library is loaded, the init.z
argument instead governs the method by which a call to clustMD is initialised.
In this instance, "quantile" will instead default to "hc", and the arguments to
hc.args and km.args will be ignored (unless all clustMD model types fail for
a given number of components).
When init.z="mclust" or clustMD is successfully invoked (via exp.init$clustMD),
the argument init.crit (see below) specifies the model-selection criterion
("bic" or "icl") by which the optimal Mclust or clustMD model type to ini-
tialise with is determined, and criterion remains unaffected.
Finally, when the model includes expert network covariates and isTRUE(exp.init$mahalanobis),
the argument exp.init$estart (see below) can be used to modify the be-
haviour of init.z="random" when nstarts > 1, toggling between a full run of
the EM algorithm for each random initialisation (i.e. exp.init$estart=FALSE,
the default), or a single run of the EM algorithm starting from the best initial par-
tition obtained among the random starts according to the iterative reallocation
initialisation routine (i.e. exp.init$estart=TRUE).

noise.args A list supplying select named parameters to control inclusion of a noise com-
ponent in the estimation of the mixture. If either or both of the arguments tau0
&/or noise.init are supplied, a noise component is added to the the model in
the estimation.

tau0 Prior mixing proportion for the noise component. If supplied, a noise
component will be added to the model in the estimation, with tau0 giving
the prior probability of belonging to the noise component for all observa-
tions. Typically supplied as a scalar in the interval (0, 1), e.g. 0.1. Can be
supplied as a vector when gating covariates are present and noise.args$noise.gate
is TRUE. This argument can be supplied instead of or in conjunction with the
argument noise.init below.

noise.init A logical or numeric vector indicating an initial guess as to which
observations are noise in the data. If numeric, the entries should correspond
to row indices of the data. If supplied, a noise component will be added to
the model in the estimation. This argument can be used in conjunction with
tau0 above, or can be replaced by that argument also.

noise.gate A logical indicating whether gating network covariates influence
the mixing proportion for the noise component, if any. Defaults to TRUE, but
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leads to greater parsimony if FALSE. Only relevant in the presence of a noise
component; only effects estimation in the presence of gating covariates.

noise.meth The method used to estimate the volume when a noise component
is invoked. Defaults to hypvol. For univariate data, this argument is ig-
nored and the range of the data is used instead (unless noise.vol below
is specified). The options "convexhull" and "ellipsoidhull" require
loading the geometry and cluster libraries, respectively. This argument
is only relevant if noise.vol below is not supplied.

noise.vol This argument can be used to override the argument noise.meth by
specifying the (hyper)volume directly, i.e. specifying an improper uniform
density. This will override the use of the range of the response data for
univariate data if supplied. Note that the (hyper)volume, rather than its
inverse, is supplied here. This can affect prediction and the location of the
MVN ellipses for MoE_gpairs plots (see noise_vol).

equalNoise Logical which is only invoked when isTRUE(equalPro) and gat-
ing covariates are not supplied. Under the default setting (FALSE), the mix-
ing proportion for the noise component is estimated, and remaining mixing
proportions are equal; when TRUE all components, including the noise com-
ponent, have equal mixing proportions.

discard.noise A logical governing how the means are summarised in parameters$mean
and by extension the location of the MVN ellipses in MoE_gpairs plots for
models with both expert network covariates and a noise component (other-
wise this argument is irrelevant).
The means for models with expert network covariates are summarised by
the posterior mean of the fitted values. By default (FALSE), the mean of
the noise component is accounted for in the posterior mean. Otherwise, or
when the mean of the noise component is unavailable (due to having been
manually supplied via noise.args$noise.vol), the z matrix is renormalised
after discarding the column corresponding to the noise component prior to
computation of the posterior mean. The renormalisation approach can be
forced by specifying noise.args$discard.noise=TRUE, even when the
mean of the noise component is available. For models with a noise compo-
nent fitted with algo="CEM", a small extra E-step is conducted for observa-
tions assigned to the non-noise components in this case.

In particular, the argument noise.meth will be ignored for high-dimensional
n <= d data, in which case the argument noise.vol must be specified. Note
that this forces noise.args$discard.noise to TRUE. See noise_vol for more
details.
The arguments tau0 and noise.init can be used separately, to provide alter-
native means to invoke a noise component. However, they can also be supplied
together, in which case observations corresponding to noise.init have proba-
bility tau0 (rather than 1) of belonging to the noise component.

asMclust The default values of stopping and hc.args$hcUse (see below) are such that
results for models with no covariates in either network are liable to differ from
results for equivalent models obtained via Mclust. MoEClust uses stopping="aitken"
and hcUse="VARS" by default, while mclust always implicitly uses stopping="relative"
and defaults to hcUse="SVD".
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asMclust is a logical variable (FALSE, by default) which functions as a sim-
ple convenience tool for overriding these two arguments (even if explicitly sup-
plied!) such that they behave like the function Mclust. Other user-specified
arguments which differ from mclust are not affected by asMclust, as their de-
faults already correspond to mclust. Results may still differ slightly as MoEClust
calculates log-likelihood values with greater precision. Finally, note that asMclust=TRUE
is invoked even for models with covariates which are not accommodated by
mclust.

equalPro Logical variable indicating whether or not the mixing proportions are to be con-
strained to be equal in the model. Default: equalPro = FALSE. Only relevant
when gating covariates are not supplied within MoE_clust, otherwise ignored.
In the presence of a noise component (see noise.args), only the mixing pro-
portions for the non-noise components are constrained to be equal (by default,
see equalNoise), after accounting for the noise component.

exp.init A list supplying select named parameters to control the initialisation routine in
the presence of expert network covariates (otherwise ignored):

joint A logical indicating whether the initial partition is obtained on the joint
distribution of the response and expert network covariates (defaults to TRUE)
or just the response variables (FALSE). By default, only continuous expert
network covariates are considered (see exp.init$clustMD below). Only
relevant when init.z is not "random" (unless isTRUE(exp.init$clustMD),
in which case init.z specifies the initialisation routine for a call to clustMD).
This will render the "quantile" option to init.z for univariate data un-
usable if continuous expert network covariates are supplied &/or categori-
cal/ordinal expert network covariates are supplied when isTRUE(exp.init$clustMD)
and the clustMD library is loaded.

mahalanobis A logical indicating whether to iteratively reallocate observations
during the initialisation phase to the component corresponding to the expert
network regression to which it’s closest to the fitted values of in terms of
Mahalanobis distance (defaults to TRUE). This will ensure that each compo-
nent can be well modelled by a single expert prior to running the EM/CEM
algorithm.

estart A logical governing the behaviour of init.z="random" when nstarts
> 1 in the presence of expert network covariates. Only relevant when isTRUE(exp.init$mahalanobis).
Defaults to FALSE; i.e. all random starts are put through full runs of the EM
algorithm. When TRUE, all random starts are put through the initial iterative
reallocation routine prior to a full run of EM for only the single best random
initial partition obtained. See the last set of Examples below.

clustMD A logical indicating whether categorical/ordinal covariates should be
incorporated when using the joint distribution of the response and expert
network covariates for initialisation (defaults to FALSE). Only relevant when
isTRUE(exp.init$joint). Requires the use of the clustMD library. Note
that initialising in this manner involves fitting all clustMD model types in
parallel for all numbers of components considered, and may fail (especially)
in the presence of nominal expert network covariates.
Unless init.z="list", supplying this argument as TRUE when the clustMD
library is loaded has the effect of superseding the init.z argument: this
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argument now governs instead how the call to clustMD is initialised (un-
less all clustMD model types fail for a given number of components, in
which case init.z is invoked instead to initialise for G values for which
all clustMD model types failed). Similarly, the arguments hc.args and
km.args will be ignored (again, unless all clustMD model types fail for a
given number of components).

max.init The maximum number of iterations for the Mahalanobis distance-
based reallocation procedure when exp.init$mahalanobis is TRUE. De-
faults to .Machine$integer.max.

identity A logical indicating whether the identity matrix (corresponding to
the use of the Euclidean distance) is used in place of the covariance ma-
trix of the residuals (corresponding to the use of the Mahalanobis distance).
Defaults to FALSE for multivariate response data but defaults to TRUE for
univariate response data. Setting identity=TRUE with multivariate data
may be advisable when the dimensions of the data are such that the covari-
ance matrix cannot be inverted (otherwise, the pseudo-inverse is used under
the FALSE default).

drop.break When isTRUE(exp.init$mahalanobis) observations will be com-
pletely in or out of a component during the initialisation phase. As such,
it may occur that constant columns will be present when building a given
component’s expert regression (particularly for categorical covariates). It
may also occur, due to this partitioning, that "unseen" data, when calculat-
ing the residuals, will have new factor levels. When isTRUE(exp.init$drop.break),
the Mahalanobis distance based initialisation phase will explicitly fail in ei-
ther of these scenarios.
Otherwise, drop_constants and drop_levels will be invoked when exp.init$drop.break
is FALSE (the default) to try to remedy the situation. In any case, only a
warning that the initialisation step failed will be printed, regardless of the
value of exp.init$drop.break.

algo Switch controlling whether models are fit using the "EM" (the default) or "CEM"
algorithm. The option "cemEM" allows running the EM algorithm starting from
convergence of the CEM algorithm.

criterion When either G or modelNames is a vector, criterion determines whether the
"bic" (Bayesian Information Criterion), "icl" (Integrated Complete Likeli-
hood), "aic" (Akaike Information Criterion) is used to determine the ’best’
model when gathering output. Note that all criteria will be returned in any case.

stopping The criterion used to assess convergence of the EM/CEM algorithm. The de-
fault ("aitken") uses Aitken’s acceleration method via aitken, otherwise the
"relative" change in log-likelihood is monitored (which may be less strict).
The "relative" option corresponds to the stopping criterion used by Mclust:
see asMclust above.
Both stopping rules are ultimately governed by tol[1]. When the "aitken"
method is employed, the asymptotic estimate of the final converged maximised
log-likelihood is also returned as linf for models with 2 or more components,
though the largest element of the returned vector loglik still gives the log-
likelihood value achieved by the parameters returned at convergence, under both
stopping methods (see MoE_clust).
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z.list A user supplied list of initial cluster allocation matrices, with number of rows
given by the number of observations, and numbers of columns given by the
range of component numbers being considered. In particular, z.list must
only include columns corresponding to non-noise components when using this
method to initialise in the presence of a noise component. Only relevant if
init.z == "z.list". These matrices are allowed correspond to both soft or
hard clusterings, and will be internally normalised so that the rows sum to 1.
See noise.init and tau0 above for details on initialisation in the presence of
a noise component.

nstarts The number of random initialisations to use when init.z="random". Defaults
to 1. When there are no expert covariates (or when exp.init$mahalanobis=FALSE
or exp.init$estart=FALSE), the results will be based on the random start
yielding the highest estimated log-likelihood after each initial partition is sub-
jected to a full run of the EM algorithm. Note, in this case, that all nstarts
random initialisations are affected by exp.init$mahalanobis, if invoked in
the presence of expert network covariates, which may remove some of the ran-
domness.

Conversely, if exp.init$mahalanobis=TRUE and exp.init$estart=TRUE, all
nstarts random starts are put through the initial iterative reallocation routine
and only the single best initial partition uncovered is put through the full run of
the EM algorithm. See init.z and exp.init$estart above for more details,
though note that exp.init$mahalanobis=TRUE and exp.init$estart=FALSE,
by default.

eps A scalar tolerance associated with deciding when to terminate computations due
to computational singularity in covariances. Smaller values of eps allow compu-
tations to proceed nearer to singularity. The default is the relative machine preci-
sion .Machine$double.eps, which is approximately 2e-16 on IEEE-compliant
machines.

tol A vector of length three giving relative convergence tolerances for 1) the log-
likelihood of the EM/CEM algorithm, 2) parameter convergence in the inner
loop for models with iterative M-step ("VEI", "VEE", "EVE", "VVE", "VEV"),
and 3) optimisation in the multinomial logistic regression in the gating network,
respectively. The default is c(1e-05, sqrt(.Machine$double.eps), 1e-08).
If only one number is supplied, it is used as the tolerance for all three cases
given.

itmax A vector of length three giving integer limits on the number of iterations for
1) the EM/CEM algorithm, 2) the inner loop for models with iterative M-step
("VEI", "VEE", "EVE", "VVE", "VEV"), and 3) the multinomial logistic regres-
sion in the gating network, respectively.

The default is c(.Machine$integer.max, .Machine$integer.max, 1000L),
allowing termination to be completely governed by tol[1] & tol[2] for the
inner and outer loops of the EM/CEM algorithm. If only one number is supplied,
it is used as the iteration limit for the outer loop only and the other elements of
itmax retain their usual defaults.

If, for any model with gating covariates, the multinomial logistic regression in
the gating network fails to converge in itmax[3] iterations at any stage of the
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EM/CEM algorithm, an appropriate warning will be printed, prompting the user
to modify this argument.

hc.args A list supplying select named parameters to control the initialisation of the clus-
ter allocations when init.z="hc" (or when init.z="mclust", which itself re-
lies on hc), unless isTRUE(exp.init$clustMD), the clustMD library is loaded,
and none of the clustMD model types fail (otherwise irrelevant):

hcUse A string specifying the type of input variables to be used. This defaults
to "VARS" here, unlike mclust which defaults to "SVD". Other allowable
values are documented in mclust.options. See asMclust above.

hc.meth A character string indicating the model to be used when hierarchical
clustering (see hc) is employed for initialisation (either when init.z="hc"
or init.z="mclust"). Defaults to "EII" for high-dimensional data, or
"VVV" otherwise.

km.args A list supplying select named parameters to control the initialisation of the clus-
ter allocations when init.z="kmeans", unless isTRUE(exp.init$clustMD),
the clustMD library is loaded, and none of the clustMD model types fail (other-
wise irrelevant):

kstarts The number of random initialisations to use. Defaults to 10.
kiters The maximum number of K-Means iterations allowed. Defaults to 10.

posidens A logical governing whether to continue running the algorithm even in the pres-
ence of positive log-densities. Defaults to TRUE, but setting posidens=FALSE
can help to safeguard against spurious solutions, which will be instantly termi-
nated if positive log-densities are encountered. Note that versions of this pack-
age prior to and including version 1.3.1 always implicitly assumed posidens=FALSE.

init.crit The criterion to be used to determine the optimal model type to initialise with,
when init.z="mclust" or when isTRUE(exp.init$clustMD) and the clustMD
library is loaded (one of "bic" or "icl"). Defaults to "icl" when criterion="icl",
otherwise defaults to "bic". The criterion argument remains unaffected.

warn.it A single number giving the iteration count at which a warning will be printed if
the EM/CEM algorithm has failed to converge. Defaults to 0, i.e. no warning
(which is true for any warn.it value less than 3), otherwise the message is
printed regardless of the value of verbose. If non-zero, warn.it should be
moderately large, but obviously less than itmax[1]. A warning will always be
printed if one of more models fail to converge in itmax[1] iterations.

MaxNWts The maximum allowable number of weights in the call to multinom for the
multinomial logistic regression in the gating network. There is no intrinsic limit
in the code, but increasing MaxNWts will probably allow fits that are very slow
and time-consuming. It may be necessary to increase MaxNWts when categorical
concomitant variables with many levels are included or the number of compo-
nents is high.

verbose Logical indicating whether to print messages pertaining to progress to the screen
during fitting. By default is TRUE if the session is interactive, and FALSE other-
wise. If FALSE, warnings and error messages will still be printed to the screen,
but everything else will be suppressed.

... Catches unused arguments.



36 MoE_control

Details

MoE_control is provided for assigning values and defaults within MoE_clust and MoE_stepwise.

While the criterion argument controls the choice of the optimal number of components and
GPCM/mclust model type, MoE_compare is provided for choosing between fits with different com-
binations of covariates or different initialisation settings.

Value

A named list in which the names are the names of the arguments and the values are the values
supplied to the arguments.

Note

Note that successfully invoking exp.init$clustMD (though it defaults to FALSE) affects the role of
the arguments init.z, hc.args, and km.args. Please read the documentation above carefully in
this instance.

The initial allocation matrices before and after the invocation of the exp.init related arguments are
both stored as attributes in the object returned by MoE_clust (named "Z.init" and "Exp.init",
respectively). If init.z="random" and nstarts > 1, the allocations corresponding to the best
random start are stored (regardless of whether exp.init$estart is invoked or not). This can
be useful for supplying z.list for future fits.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

MoE_clust, MoE_stepwise, aitken, Mclust, hc, mclust.options, quant_clust, clustMD, noise_vol,
hypvol, convhulln, ellipsoidhull, MoE_compare, multinom

Examples

ctrl1 <- MoE_control(criterion="icl", itmax=100, warn.it=15, init.z="random", nstarts=5)

data(CO2data)
GNP <- CO2data$GNP
res <- MoE_clust(CO2data$CO2, G=2, expert = ~ GNP, control=ctrl1)

# Alternatively, specify control arguments directly
res2 <- MoE_clust(CO2data$CO2, G=2, expert = ~ GNP, stopping="relative")

# Supplying ctrl1 without naming it as 'control' can throw an error
## Not run:
res3 <- MoE_clust(CO2data$CO2, G=2, expert = ~ GNP, ctrl1)
## End(Not run)

# Similarly, supplying control arguments via a mix of the ... construct
# and the named argument 'control' also throws an error
## Not run:
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res4 <- MoE_clust(CO2data$CO2, G=2, expert = ~ GNP, control=ctrl1, init.z="kmeans")
## End(Not run)

# Initialise via the mixed-type joint distribution of response & covariates
# Let the ICL criterion determine the optimal clustMD model type
# Constrain the mixing proportions to be equal
ctrl2 <- MoE_control(exp.init=list(clustMD=TRUE), init.crit="icl", equalPro=TRUE)
data(ais)
library(clustMD)
res4 <- MoE_clust(ais[,3:7], G=2, modelNames="EVE", expert= ~ sex,

network.data=ais, control=ctrl2)

# Include a noise component by specifying its prior mixing proportion
res5 <- MoE_clust(ais[,3:7], G=2, modelNames="EVE", expert= ~ sex,

network.data=ais, tau0=0.1)

# Investigate the use of random starts
sex <- ais$sex
# resA uses deterministic starting values (by default) for each G value
system.time(resA <- MoE_clust(ais[,3:7], G=2, expert=~sex, equalPro=TRUE))

# resB passes each random start through the entire EM algorithm for each G value
system.time(resB <- MoE_clust(ais[,3:7], G=2, expert=~sex, equalPro=TRUE,

init.z="random", nstarts=10))
# resC passes only the "best" random start through the EM algorithm for each G value
system.time(resC <- MoE_clust(ais[,3:7], G=2, expert=~sex, equalPro=TRUE,

init.z="random", nstarts=10, estart=TRUE))
# Here, all three settings (listed here in order of speed) converge to the same model
MoE_compare(resA, resC, resB)

MoE_crit MoEClust BIC, ICL, and AIC Model-Selection Criteria

Description

Computes the BIC (Bayesian Information Criterion), ICL (Integrated Complete Likelihood), and
AIC (Akaike Information Criterion) for parsimonious mixture of experts models given the log-
likelihood, the dimension of the data, the number of mixture components in the model, the numbers
of parameters in the gating and expert networks respectively, and, for the ICL, the numbers of
observations in each component.

Usage

MoE_crit(modelName,
loglik,
n,
d,
G,
gating.pen = G - 1L,
expert.pen = G * d,
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z = NULL,
df = NULL)

Arguments

modelName A character string indicating the model. The help file for mclustModelNames
describes the available models. Not necessary if df is supplied.

loglik The log-likelihood for a data set with respect to the Gaussian mixture model
specified in the modelName argument.

n, d, G The number of observations in the data, dimension of the data, and number
of components in the Gaussian mixture model, respectively, used to compute
loglik. d & G are not necessary if df is supplied.

gating.pen The number of parameters of the gating network of the MoEClust model. De-
faults to G - 1, which corresponds to no gating covariates. If covariates are in-
cluded, this should be the number of regression coefficients in the fitted gating
object. If there are no covariates and mixing proportions are further assumed
to be present in equal proportion, gating.pen should be 0. The number of pa-
rameters used in the estimation of the noise component, if any, should also be
included. Not necessary if df is supplied.

expert.pen The number of parameters of the expert network of the MoEClust model. De-
faults to G * d, which corresponds to no expert covariates. If covariates are in-
cluded, this should be the number of regression coefficients in the fitted expert
object. Not necessary if df is supplied.

z The n times G responsibility matrix whose [i,k]-th entry is the probability that
observation i belongs to the k-th component.. If supplied the ICL is also com-
puted and returned, otherwise only the BIC and AIC.

df An alternative way to specify the number of estimated parameters (or ’used’ de-
grees of freedom) exactly. If supplied, the arguments modelName, d, G, gating.pen,
and expert.pen, which are used to calculate the number of parameters, will be
ignored. The number of parameters used in the estimation of the noise compo-
nent, if any, should also be included.

Details

The function is vectorised with respect to the arguments modelName and loglik.

If model is an object of class "MoEClust" with G components, the number of parameters for the
gating.pen and expert.pen are length(coef(model$gating)) and G * length(coef(model$expert[[1]])),
respectively.

Models with a noise component are facilitated here too, provided the extra number of parameters
are accounted for by the user.

Value

A simplified array containing the BIC, AIC, number of estimated parameters (df) and, if z is sup-
plied, also the ICL, for each of the given input arguments.
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Note

In order to speed up repeated calls to the function inside MoE_clust, no checks take place.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Biernacki, C., Celeux, G. and Govaert, G. (2000). Assessing a mixture model for clustering with the
integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(7): 719-725.

See Also

MoE_clust, nVarParams, mclustModelNames

Examples

MoE_crit(modelName=c("VVI", "VVE", "VVV"), n=120, d=8,
G=3, loglik=c(-4036.99, -3987.12, -3992.45))

data(CO2data)
GNP <- CO2data$GNP
model <- MoE_clust(CO2data$CO2, G=1:2, expert= ~ GNP)
G <- model$G
name <- model$modelName
ll <- max(model$loglik)
n <- length(CO2data$CO2)
z <- model$z

# Compare BIC from MoE_crit to the BIC of the model
(bic2 <- MoE_crit(modelName=name, loglik=ll, n=n, d=1, G=G, z=z,

expert.pen=G * length(coef(model$expert[[1]])))["bic",])
identical(unname(bic2), model$bic) #TRUE

# Make the same comparison with the known number of estimated parameters
(bic3 <- MoE_crit(loglik=ll, n=n, df=model$df, z=z)["bic",])
identical(unname(bic3), bic2) #TRUE

MoE_cstep C-step for MoEClust Models

Description

Function to compute the assignment matrix z and the conditional log-likelihood for MoEClust mod-
els, with the aid of MoE_dens.
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Usage

MoE_cstep(data,
mus,
sigs,
log.tau = 0L,
Vinv = NULL,
Dens = NULL)

Arguments

data If there are no expert network covariates, data should be a numeric matrix or
data frame, wherein rows correspond to observations (n) and columns corre-
spond to variables (d). If there are expert network covariates, this should be a
list of length G containing matrices/data.frames of (multivariate) WLS residuals
for each component.

mus The mean for each of G components. If there is more than one component, this
is a matrix whose k-th column is the mean of the k-th component of the mixture
model. For the univariate models, this is a G-vector of means. In the presence
of expert network covariates, all values should be equal to 0.

sigs The variance component in the parameters list from the output to e.g. MoE_clust.
The components of this list depend on the specification of modelName (see
mclustVariance for details). The number of components G, the number of
variables d, and the modelName are inferred from sigs.

log.tau If covariates enter the gating network, an n times G matrix of mixing propor-
tions, otherwise a G-vector of mixing proportions for the components of the
mixture. Must be on the log-scale in both cases. The default of 0 effectively
means densities (or log-densities) aren’t scaled by the mixing proportions.

Vinv An estimate of the reciprocal hypervolume of the data region. See the function
noise_vol. Used only if an initial guess as to which observations are noise is
supplied. Mixing proportion(s) must be included for the noise component also.

Dens (Optional) A numeric matrix whose [i,k]-th entry is the log-density of obser-
vation i in component k, scaled by the mixing proportions, to which the function
is to be applied, typically obtained by MoE_dens but this is not necessary. If
this is supplied, all other arguments are ignored, otherwise MoE_dens is called
according to the other supplied arguments.

Value

A list containing two elements:

z A matrix with n rows and G columns containing 1 where the observation belongs
to the cluster indicated by the column number, and 0 otherwise.

loglik The estimated conditional log-likelihood.
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Note

This function is intended for joint use with MoE_dens, using the log-densities. Caution is advised
using this function without explicitly naming the arguments. Models with a noise component are
facilitated here too.

The C-step can be replaced by an E-step, see MoE_estep and the algo argument to MoE_control.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

MoE_dens, MoE_clust, MoE_estep, MoE_control, mclustVariance

Examples

# MoE_cstep can be invoked for fitting MoEClust models via the CEM algorithm
# via the 'algo' argument to MoE_control:
data(ais)
hema <- ais[,3:7]
model <- MoE_clust(hema, G=3, gating= ~ BMI + sex, modelNames="EEE", network.data=ais, algo="CEM")
Dens <- MoE_dens(data=hema, mus=model$parameters$mean,

sigs=model$parameters$variance, log.tau=log(model$parameters$pro))

# Construct the z matrix and compute the conditional log-likelihood
Cstep <- MoE_cstep(Dens=Dens)
(ll <- Cstep$loglik)

# Check that the z matrix & classification are the same as those from the model
identical(max.col(Cstep$z), as.integer(unname(model$classification))) #TRUE
identical(Cstep$z, model$z) #TRUE

# Call MoE_cstep directly
Cstep2 <- MoE_cstep(data=hema, sigs=model$parameters$variance,

mus=model$parameters$mean, log.tau=log(model$parameters$pro))
identical(Cstep2$loglik, ll) #TRUE

MoE_dens Density for MoEClust Mixture Models

Description

Computes densities (or log-densities) of observations in MoEClust mixture models.
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Usage

MoE_dens(data,
mus,
sigs,
log.tau = 0L,
Vinv = NULL,
logarithm = TRUE)

Arguments

data If there are no expert network covariates, data should be a numeric matrix or
data frame, wherein rows correspond to observations (n) and columns corre-
spond to variables (d). If there are expert network covariates, this should be a
list of length G containing matrices/data.frames of (multivariate) WLS residuals
for each component.

mus The mean for each of G components. If there is more than one component, this
is a matrix whose k-th column is the mean of the k-th component of the mixture
model. For the univariate models, this is a G-vector of means. In the presence
of expert network covariates, all values should be equal to 0.

sigs The variance component in the parameters list from the output to e.g. MoE_clust.
The components of this list depend on the specification of modelName (see
mclustVariance for details). The number of components G, the number of
variables d, and the modelName are inferred from sigs.

log.tau If covariates enter the gating network, an n times G matrix of mixing propor-
tions, otherwise a G-vector of mixing proportions for the components of the
mixture. Must be on the log-scale in both cases. The default of 0 effectively
means densities (or log-densities) aren’t scaled by the mixing proportions.

Vinv An estimate of the reciprocal hypervolume of the data region. See the function
noise_vol. Used only if an initial guess as to which observations are noise is
supplied. Mixing proportion(s) must be included for the noise component also.

logarithm A logical value indicating whether or not the logarithm of the component den-
sities should be returned. This defaults to TRUE, otherwise component densities
are returned, obtained from the component log-densities by exponentiation. The
log-densities can be passed to MoE_estep or MoE_cstep.

Value

A numeric matrix whose [i,k]-th entry is the density or log-density of observation i in component
k, scaled by the mixing proportions. These densities are unnormalised.

Note

This function is intended for joint use with MoE_estep or MoE_cstep, using the log-densities. Note
that models with a noise component are facilitated here too.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>
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See Also

MoE_estep, MoE_cstep, MoE_clust, mclustVariance

Examples

data(ais)
hema <- ais[,3:7]
model <- MoE_clust(hema, G=3, gating= ~ BMI + sex, modelNames="EEE", network.data=ais)
Dens <- MoE_dens(data=hema, mus=model$parameters$mean,

sigs=model$parameters$variance, log.tau=log(model$parameters$pro))

# Construct the z matrix and compute the log-likelihood
Estep <- MoE_estep(Dens=Dens)
(ll <- Estep$loglik)

# Check that the z matrix & classification are the same as those from the model
identical(max.col(Estep$z), as.integer(unname(model$classification))) #TRUE
identical(Estep$z, model$z) #TRUE

# The same can be done for models with expert covariates &/or a noise component
# Note for models with expert covariates that the mean has to be supplied as 0,
# and the data has to be supplied as "resid.data"
m2 <- MoE_clust(hema, G=2, expert= ~ sex, modelNames="EVE", network.data=ais, tau0=0.1)
Dens2 <- MoE_dens(data=m2$resid.data, sigs=m2$parameters$variance, mus=0,

log.tau=log(m2$parameters$pro), Vinv=m2$parameters$Vinv)

MoE_entropy Entropy of a fitted MoEClust model

Description

Calculates the normalised entropy of a fitted MoEClust model.

Usage

MoE_entropy(x,
group = FALSE)

Arguments

x An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with gating and/or expert
covariates and/or a noise component are facilitated here too.

group A logical (defaults to FALSE) indicating whether component-specific average
entropies should be returned instead.
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Details

When group is FALSE, this function calculates the normalised entropy via

H = − 1

n log(G)

n∑
i=1

G∑
g=1

ẑig log(ẑig)

, where n and G are the sample size and number of components, respectively, and ẑig is the esti-
mated posterior probability at convergence that observation i belongs to component g. Note that
G=x$G for models without a noise component and G=x$G + 1 for models with a noise component.

When group is TRUE,

Hi = − 1

log(G)

G∑
g=1

ẑig log(ẑig)

is computed for each observation and averaged according to the MAP classification.

Value

When group is FALSE, a single number, given by 1 − H , in the range [0,1], such that larger val-
ues indicate clearer separation of the clusters. Otherwise, a vector of length G containing the per-
component averages of the observation-specific entries is returned.

Note

This function will always return a normalised entropy of 1 for models fitted using the "CEM" algo-
rithm (see MoE_control), or models with only one component.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

See Also

MoE_clust, MoE_control, MoE_AvePP

Examples

data(ais)
res <- MoE_clust(ais[,3:7], G=3, gating= ~ BMI + sex,

modelNames="EEE", network.data=ais)

# Calculate the normalised entropy
MoE_entropy(res)

https://doi.org/10.1007/s11634-019-00373-8
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# Calculate the normalised entropy per cluster
MoE_entropy(res, group=TRUE)

MoE_estep E-step for MoEClust Models

Description

Softmax function to compute the responsibility matrix z and the log-likelihood for MoEClust mod-
els, with the aid of MoE_dens.

Usage

MoE_estep(data,
mus,
sigs,
log.tau = 0L,
Vinv = NULL,
Dens = NULL)

Arguments

data If there are no expert network covariates, data should be a numeric matrix or
data frame, wherein rows correspond to observations (n) and columns corre-
spond to variables (d). If there are expert network covariates, this should be a
list of length G containing matrices/data.frames of (multivariate) WLS residuals
for each component.

mus The mean for each of G components. If there is more than one component, this
is a matrix whose k-th column is the mean of the k-th component of the mixture
model. For the univariate models, this is a G-vector of means. In the presence
of expert network covariates, all values should be equal to 0.

sigs The variance component in the parameters list from the output to e.g. MoE_clust.
The components of this list depend on the specification of modelName (see
mclustVariance for details). The number of components G, the number of
variables d, and the modelName are inferred from sigs.

log.tau If covariates enter the gating network, an n times G matrix of mixing propor-
tions, otherwise a G-vector of mixing proportions for the components of the
mixture. Must be on the log-scale in both cases. The default of 0 effectively
means densities (or log-densities) aren’t scaled by the mixing proportions.

Vinv An estimate of the reciprocal hypervolume of the data region. See the function
noise_vol. Used only if an initial guess as to which observations are noise is
supplied. Mixing proportion(s) must be included for the noise component also.

Dens (Optional) A numeric matrix whose [i,k]-th entry is the log-density of obser-
vation i in component k, scaled by the mixing proportions, to which the softmax
function is to be applied, typically obtained by MoE_dens but this is not neces-
sary. If this is supplied, all other arguments are ignored, otherwise MoE_dens is
called according to the other supplied arguments.
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Value

A list containing two elements:

z A matrix with n rows and G columns containing the probability of cluster mem-
bership for each of n observations and G clusters.

loglik The estimated log-likelihood, computed efficiently via rowLogSumExps.

Note

This softmax function is intended for joint use with MoE_dens, using the log-densities. Caution is
advised using this function without explicitly naming the arguments. Models with a noise compo-
nent are facilitated here too.

The E-step can be replaced by a C-step, see MoE_cstep and the algo argument to MoE_control.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

MoE_dens, MoE_clust, MoE_cstep, MoE_control, mclustVariance, rowLogSumExps

Examples

data(ais)
hema <- ais[,3:7]
model <- MoE_clust(hema, G=3, gating= ~ BMI + sex, modelNames="EEE", network.data=ais)
Dens <- MoE_dens(data=hema, mus=model$parameters$mean,

sigs=model$parameters$variance, log.tau=log(model$parameters$pro))

# Construct the z matrix and compute the log-likelihood
Estep <- MoE_estep(Dens=Dens)
(ll <- Estep$loglik)

# Check that the z matrix & classification are the same as those from the model
identical(max.col(Estep$z), as.integer(unname(model$classification))) #TRUE
identical(Estep$z, model$z) #TRUE

# Call MoE_estep directly
Estep2 <- MoE_estep(data=hema, sigs=model$parameters$variance,

mus=model$parameters$mean, log.tau=log(model$parameters$pro))
identical(Estep2$loglik, ll) #TRUE

# The same can be done for models with expert covariates &/or a noise component
# Note for models with expert covariates that the mean has to be supplied as 0,
# and the data has to be supplied as "resid.data"
m2 <- MoE_clust(hema, G=2, expert= ~ sex, modelNames="EVE", network.data=ais, tau0=0.1)
Estep3 <- MoE_estep(data=m2$resid.data, sigs=m2$parameters$variance, mus=0,

log.tau=log(m2$parameters$pro), Vinv=m2$parameters$Vinv)
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MoE_gpairs Generalised Pairs Plots for MoEClust Mixture Models

Description

Produces a matrix of plots showing pairwise relationships between continuous response variables
and continuous/categorical/logical/ordinal associated covariates, as well as the clustering achieved,
according to fitted MoEClust mixture models.

Usage

MoE_gpairs(res,
response.type = c("points", "uncertainty", "density"),
subset = list(...),
scatter.type = c("lm", "points"),
conditional = c("stripplot", "boxplot"),
addEllipses = c("outer", "yes", "no", "inner", "both"),
expert.covar = TRUE,
border.col = c("purple", "black", "brown", "brown", "navy"),

bg.col = c("cornsilk", "white", "palegoldenrod", "palegoldenrod", "cornsilk"),
outer.margins = list(bottom = grid::unit(2, "lines"),

left = grid::unit(2, "lines"),
top = grid::unit(2, "lines"),
right = grid::unit(2, "lines")),

outer.labels = NULL,
outer.rot = c(0, 90),
gap = 0.05,
buffer = 0.025,
uncert.cov = FALSE,
scatter.pars = list(...),
density.pars = list(...),
stripplot.pars = list(...),
boxplot.pars = list(...),
barcode.pars = list(...),
mosaic.pars = list(...),
axis.pars = list(...),
diag.pars = list(...),
...)

Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

response.type The type of plot desired for the scatterplots comparing continuous response vari-
ables. Defaults to "points". See scatter.pars below.
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Points can also be sized according to their associated clustering uncertainty with
the option "uncertainty". In doing so, the transparency of the points will
also be proportional to their clustering uncertainty, provided the device supports
transparency. See also MoE_Uncertainty for an alternative means of visualising
observation-specific cluster uncertainties (especially for univariate data). See
scatter.pars below, and note that models fitted via the "CEM" algorithm will
have no associated clustering uncertainty.
Alternatively, the bivariate "density" contours can be displayed (see density.pars),
provided there is at least one Gaussian component in the model. Caution is ad-
vised when producing density plots for models with covariates in the expert
network; the required number of evaluations of the (multivariate) Gaussian den-
sity for each panel (res$G * prod(density.pars$grid.size)) increases by a
factor of res$n, thus plotting may be slow (particularly for large data sets). See
density.pars below.

subset A list giving named arguments for producing only a subset of panels:

show.map Logical indicating whether to show panels involving the MAP clas-
sification (defaults to TRUE, unless there is only one component, in which
case the MAP classification is never plotted.).

data.ind For subsetting response variables: a vector of column indices cor-
responding to the variables in the columns of res$data which should be
shown. Defaults to all. Can be 0, in order to suppress plotting the response
variables.

cov.ind For subsetting covariates: a vector of column indices corresponding
to the covariates in the columns res$net.covs which should be shown.
Defaults to all. Can be 0, in order to suppress plotting the covariates.

The result of the subsetting must include at least two variables, whether they be
the MAP classification, a response variable, or a covariate, in order to be valid
for plotting purposes. The arguments data.ind and cov.ind can also be used
to simply reorder the panels, without actually subsetting.

scatter.type A vector of length 2 (or 1) giving the plot type for the upper and lower trian-
gular portions of the plot, respectively, pertaining to the associated covariates.
Defaults to "lm" for covariate vs. response panels and "points" otherwise.
Only relevant for models with continuous covariates in the gating &/or expert
network. "ci" and "lm" type plots are only produced for plots pairing covariates
with response, and never response vs. response or covariate vs. covariate. Note
that lines &/or confidence intervals will only be drawn for continuous covariates
included in the expert network; to include covariates included only in the gating
network also, the options "lm2" or "ci2" can be used but this is not generally
advisable. See scatter.pars below.

conditional A vector of length 2 (or 1) giving the plot type for the upper and lower trian-
gular portions of the plot, respectively, for plots involving a mix of categorical
and continuous variables. Defaults to "stripplot" in the upper triangle and
"boxplot" in the lower triangle (see panel.stripplot and panel.bwplot).
"violin" and "barcode" plots can also be produced. Only relevant for models
with categorical covariates in the gating &/or expert network, unless show.MAP
is TRUE. Comparisons of two categorical variables (which can only ever be co-
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variates or the MAP classification) are always displayed via mosaic plots (see
strucplot).
All conditional panel types can be customised further; see stripplot.pars,
boxplot.pars (for both "boxplot" and "violin" plots), barcode.pars, and
mosaic.pars below. Note that when conditional is of length 1, that plot type
will be used in both the upper and lower triangular portions of the plot, where
relevant.

addEllipses Controls whether to add MVN ellipses with axes corresponding to the within-
cluster covariances for the response data. The options "inner" and "outer"
(the default) will colour the axes or the perimeter of those ellipses, respectively,
according to the cluster they represent (according to scatter.pars$eci.col).
The option "both" will obviously colour both the axes and the perimeter. The
"yes" or "no" options merely govern whether the ellipses are drawn, i.e. "yes"
draws ellipses without any colouring. Ellipses are only ever drawn for multi-
variate data, and only when response.type is "points" or "uncertainty".
Ellipses are centered on the posterior mean of the fitted values when there are
expert network covariates, otherwise on the posterior mean of the response vari-
ables. In the presence of expert network covariates, the component-specific co-
variance matrices are also (by default, via the argument expert.covar below)
modified for plotting purposes via the function expert_covar, in order to ac-
count for the extra variability of the means, usually resulting in bigger shapes &
sizes for the MVN ellipses.

expert.covar Logical (defaults to TRUE) governing whether the extra variability in the compo-
nent means is added to the MVN ellipses corresponding to the component co-
variance matrices in the presence of expert network covariates. See the function
expert_covar. Only relevant when response.type is "points" or "uncertainty"
when addEllipses is invoked accordingly, and/or diag.pars$show.dens=TRUE
(see below), and only relevant for models with expert network covariates.

border.col A vector of length 5 (or 1) containing border colours for plots against the MAP
classification, response vs. response, covariate vs. response, response vs. co-
variate, and covariate vs. covariate panels, respectively.
Defaults to c("purple", "black", "brown", "brown", "navy").

bg.col A vector of length 5 (or 1) containing background colours for plots against the
MAP classification, response vs. response, covariate vs. response, response vs.
covariate, and covariate vs. covariate panels, respectively.
Defaults to c("cornsilk", "white", "palegoldenrod", "palegoldenrod",
"cornsilk").

outer.margins A list of length 4 with units as components named bottom, left, top, and right,
giving the outer margins; the defaults uses two lines of text. A vector of length 4
with units (ordered properly) will work, as will a vector of length 4 with numeric
variables (interpreted as lines).

outer.labels The default is NULL, for alternating labels around the perimeter. If "all", all
labels are printed, and if "none", no labels are printed.

outer.rot A 2-vector (x, y) rotating the top/bottom outer labels x degrees and the left/right
outer labels y degrees. Only works for categorical labels of boxplot and mosaic
panels. Defaults to c(0, 90).
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gap The gap between the tiles; defaulting to 0.05 of the width of a tile.
buffer The fraction by which to expand the range of quantitative variables to provide

plots that will not truncate plotting symbols. Defaults to 0.025, i.e. 2.5 percent
of the range. Particularly useful when ellipses are drawn (see addEllipses) to
ensure ellipses are visible in full.

uncert.cov A logical indicating whether the expansion factor for points on plots involv-
ing covariates should also be modified when response.type="uncertainty".
Defaults to FALSE, and only relevant for scatterplot and strip plot panels. When
TRUE, scatter.pars$uncert.pch is invoked as the plotting symbols for covariate-
related scatterplot and strip plot panels, otherwise scatter.pars$scat.pch
and stripplot.pars$strip.pch is invoked for such panels.

scatter.pars A list supplying select parameters for the continuous vs. continuous scatterplots.
NULL is equivalent to:

list(scat.pch=res$classification, uncert.pch=19,
scat.col=res$classification, scat.size=unit(0.25, "char"),
eci.col=1:res$G, noise.size=unit(0.2, "char")),

where scat.pch, scat.col, and scat.size give the plotting symbols, colours,
and sizes of the points in scatterplot panels, respectively. Note that eci.col
gives both a) the colour of the fitted lines &/or confidence intervals for expert-
related panels when scatter.type is one of "ci" or "lm" and b) the colour of
the ellipses (if any) when addEllipses is one of "outer", "inner", or "both"
and the response data is multivariate. Note that eci.col will inherit a suitable
default from scat.col instead if the latter is supplied but the former is not.
Note also that scat.size will be modified on an observation-by-observation
level when response.type is "uncertainty". Furthermore, note that the be-
haviour for plotting symbols when response.type="uncertainty" changes
compared to response.type="points" depending on the value of the uncert.cov
argument above. uncert.pch gives the plotting symbol used for all scatterplot
(and strip plot) panels when response.type="uncertainty" and uncert.cov
is TRUE. However, when uncert.cov is FALSE, scat.pch is invoked for scatter-
plots involving covariates and uncert.pch is used for panels involving only re-
sponse variables. Finally, noise.size can be used to modify scat.size for ob-
servations assigned to the noise component (if any), but only when response.type="points".

density.pars A list supplying select parameters for visualising the bivariate density contours,
only when response.type is "density".
NULL is equivalent to:

list(grid.size=c(100, 100), dcol="grey50",
nlevels=11, show.labels=TRUE, label.style="mixed"),

where grid.size is a vector of length two giving the number of points in the
x & y direction of the grid over which the density is evaluated, respectively
(though density.pars$grid.size can also be supplied as a scalar, which will
be automatically recycled to a vector of length 2), and dcol is either a single
colour or a vector of length nlevels colours (although note that dcol, when not
specified, will be adjusted for transparency). Finally, label.style can take the
values "mixed", "flat", or "align". Note that density.pars$grid.size[1]
is also relevant when diag.pars$show.dens=TRUE (see below).
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stripplot.pars A list supplying select parameters for continuous vs. categorical panels when
one or both of the entries of conditional is "stripplot".
NULL is equivalent to:

list(strip.pch=res$classification, strip.size=unit(0.5, "char"),
strip.col=res$classification, jitter=TRUE, size.noise=unit(0.4, "char")),

where strip.size and size.noise retain the definitions for the similar argu-
ments under scatter.pars above. However, stripplot.pars$size.noise is
invoked regardless of the response.type (in contrast to scatter.pars$noise.size).
Notably, strip.col will inherit a suitable default from scatter.pars$scat.col
if the latter is supplied but the former is not. Note also that the strip.pch de-
fault is modified to scatter.pars$uncert.pch if uncert.cov is TRUE.

boxplot.pars A list supplying select parameters for continuous vs. categorical panels when
one or both of the entries of conditional is "boxplot" or "violin".
NULL is equivalent to:

list(box.pch="|", box.col="black", varwidth=FALSE,
notch=FALSE, notch.frac=0.5, box.fill=1:res$G).

All of the above are relevant for "boxplot" panels, are passed to panel.bwplot
when producing boxplots, and retain the same definitions as the similarly named
arguments therein. However, only box.col, varwidth, and box.fill are rele-
vant for "violin" panels, and in both cases box.fill is only invoked for panels
where the categorical variable is the MAP classification (i.e. when isTRUE(subset$show.map)).
See diag.pars$hist.color for controlling the colours of non-MAP-related
boxplot/violin panels. Notably, box.fill will inherit a suitable default from
scatter.pars$scat.col if the latter is supplied but the former is not.

barcode.pars A list supplying select parameters for continuous vs. categorical panels when
one or both of the entries of conditional is "barcode". See the help file for
barcode::barcode.
NULL is equivalent to:

list(bar.col=res$G:1, nint=0, ptsize=unit(0.25, "char"),
ptpch=1, bcspace=NULL, use.points=FALSE),

where bar.col is only invoked for panels where the categorical variable is the
MAP classification (i.e. when isTRUE(subset$show.map)) if it is of length
greater than 1, otherwise it is used for all relevant panels. See diag.pars$hist.color
for controlling the colours of non-MAP-related barcode panels. Notably, bar.col
will inherit a suitable default from scatter.pars$scat.col if the latter is sup-
plied but the former is not.

mosaic.pars A list supplying select parameters for categorical vs. categorical panels (if any).
NULL is equivalent to:

list(shade=NULL, gp_labels=grid::gpar(fontsize=9),
gp_args=list(), gp=list(), mfill=TRUE, mcol=1:res$G).

The current default arguments and values thereof are passed through to strucplot
for producing mosaic tiles. When shade is not FALSE, mfill is a logical which
governs the colouring scheme for panels (if any) involving the MAP classifi-
cation. When mfill is TRUE (the default), gp is invoked here in such a way
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that tiles will inherit appropriate interior colours via gp$fill from mcol and a
"black" outer colour via gp$col. When mfill is FALSE, or the panel involves
two categorical covariates, the outer colours are inherited from mcol and the
interior fill colour is inherited from bg.col. See diag.pars$hist.color for
controlling the interior fill colour of non-MAP-related mosaic panels. Notably,
mcol will inherit a suitable default from scatter.pars$scat.col if the latter
is supplied but the former is not.

axis.pars A list supplying select parameters for controlling the axes.

NULL is equivalent to:

list(n.ticks=5, axis.fontsize=9).

The argument n.ticks will be overwritten for categorical variables with fewer
than 5 levels.

diag.pars A list supplying select parameters for panels along the diagonal.

NULL is equivalent to:

list(diag.fontsize=9, show.hist=TRUE, show.dens=FALSE,
diagonal=TRUE, hist.color=hist.color, show.counts=TRUE),

where hist.color is a vector of length 4, giving the colours for the response
variables, gating covariates, expert covariates, and covariates entering both net-
works, respectively. By default, diagonal panels for response variables are
ifelse(diag.pars$show.dens, "white", "black") and covariates of any kind
are "dimgrey". hist.color also governs the outer colour for mosaic panels and
the fill colour for boxplot, violin, and barcode panels (except for those involving
the MAP classification). However, in the case of response vs. (categorical) co-
variates boxplots and violin plots, the fill colour is always "white". The MAP
classification is always coloured by cluster membership, by default. The argu-
ment show.counts is only relevant for categorical variables.

The argument show.dens toggles whether parametric density estimates are drawn
over the diagonal panels for each response variable. When show.dens=TRUE, the
component densities are shown via thin lines, with colours given by scatter.pars$scat.col,
while a thick "black" line is used for the overall mixture density. This argument
can be used with or without show.hist also being TRUE, though density curves
will appear bigger when show.hist=FALSE. Note that show.dens=TRUE is also
affected by the expert.covar argument above. Finally, the grid size when
show.dens=TRUE is given by max(res$n, density.pars$grid.size[1]).

When diagonal=TRUE (the default), the diagonal from the top left to the bot-
tom right is used for displaying the marginal distributions of variables (via his-
tograms, with or without overlaid density estimates, or barplots, as appropriate).
Specifying diagonal=FALSE will place the diagonal running from the top right
down to the bottom left.

... Catches unused arguments. Alternatively, named arguments can be passed di-
rectly here to any/all of scatter.pars, stripplot.pars, boxplot.pars, barcode.pars,
mosaic.pars, axis.pars, and diag.pars.
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Value

A generalised pairs plot showing all pairwise relationships between clustered response variables and
associated gating &/or expert network continuous &/or categorical variables, coloured according to
the MAP classification, with the marginal distributions of each variable along the diagonal.

Note

For MoEClust models with more than one expert network covariate, fitted lines produced in continu-
ous covariate vs. continuous response scatterplots via scatter.type="lm" or scatter.type="ci"
will NOT correspond to the coefficients in the expert network (res$expert).

plot.MoEClust is a wrapper to MoE_gpairs which accepts the default arguments, and also pro-
duces other types of plots. Caution is advised producing generalised pairs plots when the dimension
of the data is large.

Finally, note that all colour-related defaults in scatter.pars, stripplot.pars, barcode.pars,
and mosaic.pars above assume a specific colour-palette (see mclust.options("classPlotColors")).
Thus, for instance, specifying scatter.pars$scat.col=res$classification will produce dif-
ferent results compared to leaving this argument unspecified. This is especially true for models
with a noise component, for which the default is handled quite differently (for one thing, res$G
is the number of non-noise components). Similarly, all pch-related defaults in scatter.pars and
stripplot.pars above assume a specific set of plotting symbols also (see mclust.options("classPlotSymbols")).
Generally, all colour and symbol related arguments are strongly recommended to be left at their de-
fault values, unless being supplied as a single character string, e.g. "black" for colours. To help in
this regard, colour-related arguments sensibly inherent their default from scatter.pars$scat.col
if that is supplied and the argument in question is not.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

Emerson, J. W., Green, W. A., Schloerke, B., Crowley, J., Cook, D., Hofmann, H. and Wickham,
H. (2013). The generalized pairs plot. Journal of Computational and Graphical Statistics, 22(1):
79-91.

See Also

MoE_clust, MoE_stepwise, plot.MoEClust, MoE_Uncertainty, expert_covar, panel.stripplot,
panel.bwplot, panel.violin, strucplot, mclust.options

Examples

data(ais)
res <- MoE_clust(ais[,3:7], G=2, gating= ~ BMI, expert= ~ sex,

network.data=ais, modelNames="EVE")

https://doi.org/10.1007/s11634-019-00373-8
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MoE_gpairs(res)

# Produce the same plot, but with a violin plot in the lower triangle.
# Colour the outline of the mosaic tiles rather than the interior using mfill.
# Size points in the response vs. response panels by their clustering uncertainty.

MoE_gpairs(res, conditional=c("stripplot", "violin"),
mfill=FALSE, response.type="uncertainty")

# Instead show the bivariate density contours of the response variables (without labels).
# (Plotting may be slow when response.type="density" for models with expert covariates.)
# Use different colours for histograms of covariates in the gating/expert/both networks.
# Also use different colours for response vs. covariate & covariate vs. response panels.

MoE_gpairs(res, response.type="density", show.labels=FALSE,
hist.color=c("black", "cyan", "hotpink", "chartreuse"),
bg.col=c("whitesmoke", "white", "mintcream", "mintcream", "floralwhite"))

# Examine the effect of the expert.covar argument in conjunction with show.dens
MoE_gpairs(res, cov.ind=0, expert.covar=TRUE,

show.dens=TRUE, show.hist=FALSE, grid.size=1000)
MoE_gpairs(res, cov.ind=0, expert.covar=FALSE,

show.dens=TRUE, show.hist=FALSE, grid.size=1000)

# Produce a generalised pairs plot for a model with a noise component.
# Reorder the covariates and omit the variables "Hc" and "Hg".
# Use barcode plots for the categorical/continuous pairs.
# Magnify the size of scatter points assigned to the noise component.

resN <- MoE_clust(ais[,3:7], G=2, gating= ~ SSF + Ht, expert= ~ sex,
network.data=ais, modelNames="EEE", tau0=0.1, noise.gate=FALSE)

MoE_gpairs(resN, data.ind=c(1,2,5), cov.ind=c(3,1,2),
conditional="barcode", noise.size=grid::unit(0.5, "char"))

MoE_mahala Mahalanobis Distance Outlier Detection for Multivariate Response

Description

Computes the Mahalanobis distance between the response variable(s) and the fitted values of linear
regression models with multivariate or univariate responses.

Usage

MoE_mahala(fit,
resids,
squared = FALSE,
identity = NULL)
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Arguments

fit A fitted lm model, inheriting either the "mlm" or "lm" class.

resids The residuals. Can be residuals for observations included in the model, or resid-
uals arising from predictions on unseen data. Must be coercible to a matrix with
the number of columns being the number of response variables. Missing values
are not allowed.

squared A logical. By default (FALSE), the generalized interpoint distance is computed.
Set this flag to TRUE for the squared value.

identity A logical indicating whether the identity matrix is used in place of the precision
matrix in the Mahalanobis distance calculation. Defaults to FALSE for multivari-
ate response data but defaults to TRUE for univariate response data, where TRUE
corresponds to the use of the Euclidean distance. Setting identity=TRUE with
multivariate data may be advisable when the dimensions of the data are such
that the covariance matrix cannot be inverted (otherwise, the pseudo-inverse is
used under the FALSE default).

Value

A vector giving the Mahalanobis distance (or squared Mahalanobis distance) between response(s)
and fitted values for each observation.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National
Institute of Sciences, India, 2(1): 49-55.

Examples

data(ais)
hema <- as.matrix(ais[,3:7])
mod <- lm(hema ~ sex + BMI, data=ais)
res <- hema - predict(mod)
MoE_mahala(mod, res, squared=TRUE)

data(CO2data)
CO2 <- CO2data$CO2
GNP <- CO2data$GNP
mod2 <- lm(CO2 ~ GNP, data=CO2data)
pred <- predict(mod2)
res2 <- CO2 - pred
maha <- MoE_mahala(mod2, res2)

https://doi.org/10.1007/s11634-019-00373-8
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# Highlight outlying observations
plot(GNP, CO2, type="n", ylab=expression('CO'[2]))
lines(GNP, pred, col="red")
points(GNP, CO2, cex=maha, lwd=2)
text(GNP, CO2, col="blue",

labels=replace(as.character(CO2data$country), maha < 1, ""))

# Replicate initialisation strategy using 2 randomly chosen components
# Repeat the random initialisation if necessary
# (until 'crit' at convergence is minimised)
G <- 3L
z <- sample(seq_len(G), nrow(CO2data), replace=TRUE)
old <- Inf
crit <- .Machine$double.xmax
while(crit < old) {

Sys.sleep(1)
old <- crit
maha <- NULL
plot(GNP, CO2, type="n", ylab=expression('CO'[2]))
for(g in seq_len(G)) {
ind <- which(z == g)
mod <- lm(CO2 ~ GNP, data=CO2data, sub=ind)
pred <- predict(mod, newdata=CO2data[,"CO2", drop=FALSE])
maha <- cbind(maha, MoE_mahala(mod, CO2 - pred))
lines(GNP, pred, col=g + 1L)
}
min.M <- rowMins(maha)
crit <- sum(min.M)
z <- max.col(maha == min.M)
points(GNP, CO2, cex=min.M, lwd=2, col=z + 1L)
text(GNP, CO2, col=z + 1L,

labels=replace(as.character(CO2data$country), which(min.M <= 1), ""))
}
crit

MoE_news Show the NEWS file

Description

Show the NEWS file of the MoEClust package.

Usage

MoE_news()

Value

The MoEClust NEWS file, provided the session is interactive.
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Examples

MoE_news()

MoE_plotCrit Model Selection Criteria Plot for MoEClust Mixture Models

Description

Plots the BIC, ICL, AIC, or log-likelihood values of a fitted MoEClust object.

Usage

MoE_plotCrit(res,
criterion = c("bic", "icl", "aic", "loglik"),
...)

Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

criterion The criterion to be plotted. Defaults to "bic".
... Catches other arguments, or additional arguments to be passed to plot.mclustBIC

(or equivalent functions for the other criterion arguments). In particular, the
argument legendArgs to plot.mclustBIC can be passed.

Value

A plot of the values of the chosen criterion. The values themselves can also be returned invisibly.

Note

plot.MoEClust is a wrapper to MoE_plotCrit which accepts the default arguments, and also pro-
duces other types of plots.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

MoE_clust, plot.MoEClust, plot.mclustBIC

Examples

# data(ais)
# res <- MoE_clust(ais[,3:7], expert= ~ sex, network.data=ais)
# (crit <- MoE_plotCrit(res))
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MoE_plotGate Plot MoEClust Gating Network

Description

Plots the gating network for fitted MoEClust models, i.e. the observation index against the mixing
proportions for that observation, coloured by cluster.

Usage

MoE_plotGate(res,
x.axis = NULL,
type = "b",
pch = 1,
xlab = "Observation",
ylab = expression(widehat(tau)[g]),
ylim = c(0, 1),
col = NULL,
...)

Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

x.axis Optional argument for the x-axis against which the mixing proportions are plot-
ted. Defaults to 1:res$n if missing. Supplying x.axis changes the defaults for
the type and xlab arguments. Users are advised to only use quantities related
to the gating network of the fitted model here. Furthermore, use of the x.axis
argument is not recommended for models with more than one gating network
covariate.

type, pch, xlab, ylab, ylim, col
These graphical parameters retain their definitions from matplot. col defaults
to the settings in mclust.options. Note that the default value of type changes
depending on whether x.axis is supplied and whether the gating network con-
tains multiple covariates &/or categorical covariates.

... Catches unused arguments, or additional arguments to be passed to matplot.

Value

A plot of the gating network of the fitted MoEClust model. The parameters of the gating network
can also be returned invisibly.

Note

plot.MoEClust is a wrapper to MoE_plotGate which accepts the default arguments, and also pro-
duces other types of plots.

By default, the noise component (if any) will be coloured "darkgrey".
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Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

MoE_clust, plot.MoEClust, matplot

Examples

data(ais)
res <- MoE_clust(ais[,3:7], gating= ~ BMI, G=3, modelNames="EEE",

network.data=ais, noise.gate=FALSE, tau0=0.1)

# Plot against the observation index and examine the gating network coefficients
(gate <- MoE_plotGate(res))

# Plot against BMI
MoE_plotGate(res, x.axis=ais$BMI, xlab="BMI")

# Plot against a categorical covariate
res2 <- MoE_clust(ais[,3:7], gating= ~ sex, G=3, modelNames="EVE", network.data=ais)
MoE_plotGate(res2, x.axis=ais$sex, xlab="sex")

MoE_plotLogLik Plot the Log-Likelihood of a MoEClust Mixture Model

Description

Plots the log-likelihood at every iteration of the EM/CEM algorithm used to fit a MoEClust mixture
model.

Usage

MoE_plotLogLik(res,
type = "l",
xlab = "Iteration",
ylab = "Log-Likelihood",
xaxt = "n",
...)

Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

type, xlab, ylab, xaxt
These graphical parameters retain their usual definitions from plot.

... Catches unused arguments, or additional arguments to be passed to plot.
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Value

A plot of the log-likelihood versus the number EM iterations. A list with the vector of log-likelihood
values and the final value at convergence can also be returned invisibly.

Note

plot.MoEClust is a wrapper to MoE_plotLogLik which accepts the default arguments, and also
produces other types of plots.

res$LOGLIK can also be plotted, to compare maximal log-likelihood values for all fitted models.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

MoE_clust, plot.MoEClust,

Examples

data(ais)
res <- MoE_clust(ais[,3:7], gating= ~ BMI, expert= ~ sex, tau0=0.1,

G=2, modelNames="EVE", network.data=ais)
(ll <- MoE_plotLogLik(res))

MoE_Similarity Plot the Similarity Matrix of a MoEClust Mixture Model

Description

Produces a heatmap of the similarity matrix constructed from the res$z matrix at convergence of a
MoEClust mixture model.

Usage

MoE_Similarity(res,
col = grDevices::heat.colors(30L, rev=TRUE),
reorder = TRUE,
legend = TRUE,
...)
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Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

col A vector of colours as per image. Will be checked for validity.

reorder A logical (defaults to TRUE) indicating whether observations should be reordered
for visual clarity.

legend A logical (defaults to TRUE) indicating whether to append a colour key legend.

... Catches unused arguments, or arguments to be passed to hclust when reorder=TRUE.

Value

The similarity matrix in the form of a heatmap is plotted; the matrix itself can also be returned
invisibly. The invisibly returned matrix will also be reordered if reordered=TRUE.

Note

plot.MoEClust is a wrapper to MoE_Similarity which accepts the default arguments, and also
produces other types of plots.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

MoE_clust, plot.MoEClust,

Examples

data(ais)
mod <- MoE_clust(ais[,3:7], G=2, modelNames="EEE", gating= ~ SSF + Ht,

expert= ~ sex, network.data=ais, tau0=0.1, noise.gate=FALSE)
sim <- MoE_Similarity(mod)

MoE_stepwise Stepwise model/variable selection for MoEClust models

Description

Conducts a greedy forward stepwise search to identify the optimal MoEClust model according to
some criterion. Components and/or gating covariates and/or expert covariates are added to
new MoE_clust fits at each step, while each step is evaluated for all valid modelNames.
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Usage

MoE_stepwise(data,
network.data = NULL,
gating = NULL,
expert = NULL,
modelNames = NULL,
fullMoE = FALSE,
noise = FALSE,
initialModel = NULL,
initialG = NULL,
stepG = TRUE,
criterion = c("bic", "icl", "aic"),
equalPro = c("all", "both", "yes", "no"),
noise.gate = c("all", "both", "yes", "no"),
verbose = interactive(),
...)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables
are not allowed. If a matrix or data frame, rows correspond to observations and
columns correspond to variables.

network.data An optional matrix or data frame in which to look for the covariates speci-
fied in the gating &/or expert networks, if any. Must include column names.
Columns in network.data corresponding to columns in data will be automati-
cally removed. While a single covariate can be supplied as a vector (provided the
’$’ operator or ’[]’ subset operator are not used), it is safer to supply a named
1-column matrix or data frame in this instance.

gating A vector giving the names of columns in network.data used to define the scope
of the gating network. By default, the initial model will contain no covariates
(unless initialModel is supplied with gating covariates), thereafter all vari-
ables in gating (save for those in initialModel, if any) will be considered for
inclusion where appropriate.
If gating is not supplied (or set to NULL), all variables in network.data will
be considered for the gating network. gating can also be supplied as NA, in
which case no gating network covariates will ever be considered (save for those
in initialModel, if any). Supplying gating and expert can be used to ensure
different subsets of covariates enter different parts of the model.

expert A vector giving the names of columns in network.data used to define the scope
of the expert network. By default, the initial model will contain no covariates
(unless initialModel is supplied with expert covariates), thereafter all vari-
ables in expert (save for those in initialModel, if any) will be considered for
inclusion where appropriate.
If expert is not supplied (or set to NULL), all variables in network.data will
be considered for the expert network. expert can also be supplied as NA, in
which case no expert network covariates will ever be considered (save for those
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in initialModel, if any). Supplying expert and gating can be used to ensure
different subsets of covariates enter different parts of the model.

modelNames A character string of valid model names, to be used to restrict the size of the
search space, if desired. By default, all valid model types are explored. Rather
than considering the changing of the model type as an additional step, every step
is evaluated over all entries in modelNames. See MoE_clust for more details.
Note that if initialModel is supplied (see below), modelNames will be aug-
mented with initialModel$modelName if needs be.

fullMoE A logical which, when TRUE, ensures that only models where the same covariates
enter both parts of the model (the gating and expert networks) are considered.
This restricts the search space to exclude models where covariates differ across
networks. Thus, the search is likely to be faster, at the expense of potentially
missing out on optimal models. Defaults to FALSE.
Furthermore, when TRUE, the set of candidate covariates is automatically taken
to be the union of the named covariates in gating and expert, for convenience.
In other words, gating=NA will only work if expert=NA also, and both should
be set to NULL in order to consider all potential covariates.
In addition, caution is advised using this argument in conjunction with initialModel,
which must satisfy the constraint that the same set of covariates be used in both
parts of the model, for initial models where gating covariates are allowable. Fi-
nally, note that this argument does not preclude a model with only expert covari-
ates included if the number of components is such that the inclusion of gating
covariates is infeasible.

noise A logical indicating whether to assume all models contain an additional noise
component (TRUE) or not (FALSE, the default). If initialModel or initialG is
not specified, the search starts from a G=0 noise-only model when noise is TRUE,
otherwise the search starts from a G=1 model with no covariates when noise is
FALSE. See MoE_control for more details. Note, however, that if the model
specified in initialModel contains a noise component, the value of the noise
argument will be overridden to TRUE; similarly, if the initialModel model does
not contain a noise component, noise will be overridden to FALSE.

initialModel An object of class "MoEClust" generated by MoE_clust or an object of class
"MoECompare" generated by MoE_compare. This gives the initial model to use
at the first step of the selection algorithm, to which components and/or covari-
ates etc. can be added. Especially useful if the model is expected to have
more than one component a priori (see initialG below as an alternative). The
initialModel model must have been fitted to the same data in data.
If initialModel is not specified, the search starts from a G=0 noise-only model
when noise is TRUE, otherwise the search starts from a G=1 model with no
covariates when noise is FALSE. If initialModel is supplied and it contains
a noise component, only models with a noise component will be considered
thereafter (i.e. the noise argument can be overridden by the initialModel
argument). If initialModel contains gating &/or expert covariates, these co-
variates will be included in all subsequent searches, with covariates in expert
and gating still considered as candidates for additional inclusion, as normal.
However, while initialModel can include covariates not specified in gating
&/or expert, the initialModel$modelName should be included in the spec-
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ified modelNames; if it is not, modelNames will be forcibly augmented with
initialModel$modelName (as stated above). Furthermore, it is assumed that
initialModel is already optimal with respect to the model type. If it is not, the
algorithm may be liable to converge to a sub-optimal model, and so a warning
will be printed if the function suspects that this might be the case.

initialG A single (positive) integer giving the number of mixture components (clus-
ters) to initialise the stepwise search algorithm with. This is a simpler alter-
native to the initialModel argument, to be used when the only prior knowl-
edge relates to the number of components, and not other features of the model
(e.g. the covariates which should be included). Consequently, initialG is
only relevant when initialModel is not supplied. When neither initialG nor
initialModel is specified, the search starts from a G=0 noise-only model when
noise is TRUE, otherwise the search starts from a G=1 model with no covariates
when noise is FALSE. See stepG below for fixing the number of components at
this initialG value.

stepG A logical indicating whether the algorithm should consider incrementing the
number of components at each step. Defaults to TRUE; use FALSE when search-
ing only over configurations with the same number of components is of interest.
Setting stepG to FALSE is possible with or without specifying initialModel or
initialG, but is primarily intended for use when one of these arguments is sup-
plied, otherwise the algorithm will be stuck forever with only one component.

criterion The model selection criterion used to determine the optimal action at each step.
Defaults to "bic".

equalPro A character string indicating whether models with equal mixing proportions
should be considered. "both" means models with both equal and unequal mix-
ing proportions will be considered, "yes" means only models with equal mixing
proportions will be considered, and "no" means only models with unequal mix-
ing proportions will be considered. Notably, no setting for equalPro is enough
to rule out models with gating covariates from consideration.
The default ("all") is equivalent to "both" with the addition that all possi-
ble mixing proportion constraints will be tried for the initialModel (if any,
provided it doesn’t contain gating covariate(s)) or initialG before adding a
component or additional covariates; otherwise, this equalPro argument only
governs whether mixing proportion constraints are considered as components
are added.
Considering "all" (or "both") equal and unequal mixing proportion models
increases the search space and the computational burden, but this argument
becomes irrelevant after a model, if any, with gating network covariate(s) is
considered optimal for a given step. The "all" default is strongly recom-
mended so that viable candidate models are not missed out on, particularly when
initialModel or initialG are given. However, this does not guarantee that an
optimal model will not be skipped; if equalPro is restricted via "yes" or "no",
a suboptimal model at one step may ultimately lead to a better final model, in
some edge cases. See MoE_control for more details.

noise.gate A character string indicating whether models where the gating network for the
noise component depends on covariates are considered. "yes" means only mod-
els where this is the case will be considered, "no" means only models for which
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the noise component’s mixing proportion is constant will be considered and
"both" means both of these scenarios will be considered.
The default ("all") is equivalent to "both" with the addition that all possi-
ble gating network noise settings will be tried for the initialModel (if any,
provided it contains gating covariates and a noise component) before adding a
component or additional covariates; otherwise, this noise.gate argument only
governs the inclusion/exclusion of this constraint as components or covariates
are added.
Considering "all" (or "both") settings increases the search space and the com-
putational burden, but this argument is only relevant when noise=TRUE and
gating covariates are being considered. The "all" default is strongly rec-
ommended so that viable candidate models are not missed out on, particularly
when initialModel or initialG are given. However, this does not guarantee
that an optimal model will not be skipped; if noise.gate is restricted via "yes"
or "no", a suboptimal model at one step may ultimately lead to a better final
model, in some edge cases. See MoE_control for more details.

verbose Logical indicating whether to print messages pertaining to progress to the screen
during fitting. By default is TRUE if the session is interactive, and FALSE other-
wise. If FALSE, warnings and error messages will still be printed to the screen,
but everything else will be suppressed.

... Additional arguments to MoE_control, except for those arguments of the same
name which are already listed here, e.g. equalPro and noise.gate. Note that
these arguments will be supplied to all candidate models for every step. For
arguments specific to MoE_control (e.g. stopping, algo, etc.), it is recom-
mended to run MoE_stepwise multiple times while toggling these arguments, if
desired.

Details

The arguments modelNames, equalPro, and noise.gate are provided for computational conve-
nience. They can be used to reduce the number of models under consideration at each stage.

The same is true of the arguments gating and expert, which can each separately (or jointly, if
fullMoE is TRUE) be made to consider all variables in network.data, or a subset, or none at all.

Finally, initialModel or initialG can be used to kick-start the search algorithm by incorporating
prior information in a more direct way; in the latter case, only in the form of the number of compo-
nents; in the former case, a full model with a given number of components, certain included gating
and expert network covariates, and a certain model type can give the model an even more informed
head start. In either case, the stepG argument can be used to fix the number of components and
only search over different configurations of covariates.

Without any prior information, it is best to accept the defaults at the expense of a longer run-time.

Value

An object of class "MoECompare" containing information on all visited models and the optimal
model (accessible via x$optimal).
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Note

It is advised to run this function once with noise=FALSE and once with noise=TRUE and then
choose the optimal model across both sets of results.

At present, only additions (of components and covariates) are considered. In future updates, it may
be possible to allow both additions and removals.

The function will attempt to remove duplicate variables found in both data and network.data; in
particular, they will be removed from network.data. Users are however advised to careful spec-
ify data and network.data such that there are no duplicates, especially if the desired variable(s)
should belong to network.data.

Finally, if the user intends to search for the best model according to the "icl" criterion, then
specifying either initialModel or initialG is advisable. This is because the algorithm otherwise
starts with a single component and thus there is no entropy term, meaning the stepwise search can
quickly and easily get stuck at G=1. See the examples below.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

See Also

MoE_clust, MoE_compare, MoE_control

Examples

# data(CO2data)
# Search over all models where the single covariate can enter either network
# (mod1 <- MoE_stepwise(CO2data$CO2, CO2data[,"GNP", drop=FALSE]))
#
# data(ais)
# Only look for EVE & EEE models with at most one expert network covariate
# Do not consider any gating covariates and only consider models with equal mixing proportions
# (mod2 <- MoE_stepwise(ais[,3:7], ais, gating=NA, expert="sex",
# equalPro="yes", modelNames=c("EVE", "EEE")))
#
# Look for models with noise & only those where the noise component's mixing proportion is constant
# Speed up the search with an initialModel, fix G, and restrict the covariates & model type
# init <- MoE_clust(ais[,3:7], G=2, modelNames="EEE",
# expert= ~ sex, network.data=ais, tau0=0.1)
# (mod3 <- MoE_stepwise(ais[,3:7], ais, noise=TRUE, expert="sex",
# gating=c("SSF", "Ht"), noise.gate="no",
# initialModel=init, stepG=FALSE, modelNames="EEE"))
#
# Compare both sets of results (with & without a noise component) for the ais data

https://doi.org/10.1007/s11634-019-00373-8
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# (comp1 <- MoE_compare(mod2, mod3, optimal.only=TRUE))
# comp1$optimal
#
# Target a model for the AIS data which is optimal in terms of ICL, without any restrictions
# mod4 <- MoE_stepwise(ais[,3:7], ais, criterion="icl")
#
# This gets stuck at a G=1 model, so specify an initial G value as a head start
# mod5 <- MoE_stepwise(ais[,3:7], ais, criterion="icl", initialG=2)
#
# Check that specifying an initial G value enables a better model to be found
# (comp2 <- MoE_compare(mod4, mod5, optimal.only=TRUE, criterion="icl"))

# Finally, restrict the search to full MoE models only
# Notice that the candidate covariates are the union of gating and expert
# Notice also that the algorithm initially traverses models with only
# expert covariates when the inclusion of gating covariates is infeasible
# mod6 <- MoE_stepwise(ais[,3:7], ais, fullMoE=TRUE, gating="BMI", expert="Bfat")

MoE_Uncertainty Plot Clustering Uncertainties

Description

Plots the clustering uncertainty for every observation from a fitted "MoEClust" model, including
models with a noise component.

Usage

MoE_Uncertainty(res,
type = c("barplot", "profile"),
truth = NULL,
decreasing = FALSE,
...)

Arguments

res An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

type The type of plot to be produced (defaults to "barplot"). The "profile" option
instead displays uncertainties in increasing/decreasing order of magnitude (see
decreasing).

truth An optional argument giving the true classification of the data. When truth is
supplied and type="barplot", misclassified observations are highlighted in a
different colour, otherwise observations with uncertainty greater than 1/res$G
are given in a different colour. When truth is supplied and type="profile",
the uncertainty of misclassified observations is marked by vertical lines on the
plot.
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decreasing Logical indicating whether uncertainties should be ordered in decreasing order
(defaults to FALSE). Only relevant when type="profile".

... Catches unused arguments.

Details

The y-axis of this plot runs from 0 to 1 - 1/res$G, with a horizontal line also drawn at 1/res$G.
When type="barplot", uncertainties greater than this value are given a different colour when
truth is not supplied, otherwise misclassified observations are given a different colour. Note,
however, that G(0) = res$G + 1 is used in place of res$G for models with a noise component.

Value

A plot showing the clustering uncertainty of each observation (sorted in increasing/decreasing order
when type="profile"). The (unsorted) vector of uncertainties can also be returned invisibly.
When truth is supplied, the indices of the misclassified observations are also invisibly returned.

Note

plot.MoEClust is a wrapper to MoE_Uncertainty which accepts the default arguments, and also
produces other types of plots.

An alternative means of visualising clustering uncertainties (at least for multivariate data) is pro-
vided by the functions MoE_gpairs and plot.MoEClust, specifically when their argument response.type
is given as "uncertainty".

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

MoE_clust, MoE_gpairs, plot.MoEClust

Examples

data(ais)
res <- MoE_clust(ais[,3:7], gating= ~ sex, G=3, modelNames="EEE", network.data=ais)

# Produce an uncertainty barplot
MoE_Uncertainty(res)

# Produce an uncertainty profile plot
MoE_Uncertainty(res, type="profile")

# Let's assume the true clusters correspond to sex
(ub <- MoE_Uncertainty(res, truth=ais$sex))
(up <- MoE_Uncertainty(res, type="profile", truth=ais$sex))
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noise_vol Approximate Hypervolume Estimate

Description

Computes simple approximations to the hypervolume of univariate and multivariate data sets. Also
returns the location of the centre of mass.

Usage

noise_vol(data,
method = c("hypvol", "convexhull", "ellipsoidhull"),
reciprocal = FALSE)

Arguments

data A numeric vector, matrix, or data frame of observations. Categorical variables
are not allowed, and covariates should not be included. If a matrix or data frame,
rows correspond to observations and columns correspond to variables. There
must be more observations than variables.

method The method used to estimate the hypervolume. The default method uses the
function hypvol. The "convexhull" and "ellipsoidhull" options require
loading the geometry and cluster libraries, respectively. This argument is
only relevant for multivariate data; for univariate data, the range of the data is
used. Note that the "convexhull" method is liable to be slow when data has
many columns.

reciprocal A logical variable indicating whether or not the reciprocal hypervolume is de-
sired rather than the hypervolume itself. The default is to return the hypervol-
ume.

Value

A list with the following two elements:

vol A hypervolume estimate (or its inverse).
This can be used as the hypervolume parameter for the noise component when observations
are designated as noise in MoE_clust.

loc A vector of length ncol(data) giving the location of the centre of mass.
This can help in predicting the fitted values of models fitted with noise components via
MoE_clust.

Note

This function is called when adding a noise component to MoEClust models via the function
MoE_control, specifically using its arguments noise.meth &/or tau0. The function internally
only uses the response variables, and not the covariates. However, one can bypass the invocation
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of this function by specifying the noise.vol argument of MoE_control directly. This is explicitly
necessary for models for high-dimensional data which include a noise component for which this
function cannot estimate a (hyper)volume.

Note that supplying the volume manually to MoE_clust can affect the summary of the means in
parameters$mean and by extension the location of the MVN ellipses in MoE_gpairs plots for mod-
els with both expert network covariates and a noise component. The location cannot be estimated
when the volume is supplied manually; in this case, prediction is made on the basis of renormal-
ising the z matrix after discarding the column corresponding to the noise component. Otherwise,
the mean of the noise component is accounted for. The renormalisation approach can be forced
by specifying noise.args$discard.noise=TRUE, even when the mean of the noise component is
available.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

hypvol, convhulln, ellipsoidhull

Examples

data(ais)
noise_vol(ais[,3:7], reciprocal=TRUE)

noise_vol(ais[,3:7], reciprocal=FALSE, method="convexhull")

plot.MoEClust Plot MoEClust Results

Description

Plot results for fitted MoE_clust mixture models with gating &/or expert network covariates: gen-
eralised pairs plots, model selection criteria, the log-likelihood vs. the EM iterations, and the gating
network are all currently visualisable.

Usage

## S3 method for class 'MoEClust'
plot(x,

what = c("gpairs", "gating", "criterion", "loglik", "similarity", "uncertainty"),
...)
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Arguments

x An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Models with a noise component are
facilitated here too.

what The type of graph requested:

gpairs A generalised pairs plot. To further customise this plot, arguments to
MoE_gpairs can be supplied.

gating The gating network. To further customise this plot, arguments to MoE_plotGate
and matplot can be supplied.

criterion The model selection criteria. To further customise this plot, argu-
ments to MoE_plotCrit and plot.mclustBIC can be supplied.

loglik The log-likelihood vs. the iterations of the EM algorithm. To further
customise this plot, arguments to MoE_plotLogLik and plot can be sup-
plied.

similarity The similarity matrix constructed from x$z at convergence, in the
form of a heatmap. To further customise this plot, arguments to MoE_Similarity
can be supplied.

uncertainty The clustering uncertainty for every observation. To further cus-
tomise this plot, arguments to MoE_Uncertainty can be supplied.

By default, all of the above graphs are produced.

... Optional arguments to be passed to MoE_gpairs, MoE_plotGate, MoE_plotCrit,
MoE_plotLogLik, MoE_Similarity, MoE_Uncertainty, matplot, plot.mclustBIC
and plot. In particular, the argument legendArgs to plot.mclustBIC can be
passed to MoE_plotCrit.

Details

For more flexibility in plotting, use MoE_gpairs, MoE_plotGate, MoE_plotCrit, MoE_plotLogLik,
MoE_Similarity, and MoE_Uncertainty directly.

Value

The visualisation according to what of the results of a fitted MoEClust model.

Note

Caution is advised producing generalised pairs plots when the dimension of the data is large.

Other types of plots are available by first calling as.Mclust on the fitted object, and then calling
plot.Mclust on the results. These can be especially useful for univariate data.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>
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References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

See Also

MoE_clust, MoE_stepwise, MoE_gpairs, MoE_plotGate, MoE_plotCrit, MoE_plotLogLik, MoE_Similarity,
MoE_Uncertainty, as.Mclust, plot.Mclust

Examples

data(ais)
res <- MoE_clust(ais[,3:7], gating= ~ BMI, expert= ~ sex,

G=2, modelNames="EVE", network.data=ais)

# Plot the gating network
plot(res, what="gating", x.axis=ais$BMI, xlab="BMI")

# Plot the log-likelihood
plot(res, what="loglik", col="blue")

# Plot the uncertainty profile
plot(res, what="uncertainty", type="profile")

# Produce a generalised pairs plot
plot(res, what="gpairs")

# Produce a heatmap of the similarity matrix
plot(res, what="similarity")

# Modify the gpairs plot by passing arguments to MoE_gpairs()
plot(res, what="gpairs", response.type="density", varwidth=TRUE,

data.ind=c(5,3,4,1,2), jitter=FALSE, show.counts=FALSE)

predict.MoEClust Predictions for MoEClust models

Description

Predicts both cluster membership probabilities and fitted response values from a MoEClust model,
using covariates and response data, or covariates only. The predicted MAP classification, mixing
proportions, and component means are all also reported in both cases, as well as the predictions of
the expert network corresponding to the most probable component.

https://doi.org/10.1007/s11634-019-00373-8
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Usage

## S3 method for class 'MoEClust'
predict(object,

newdata,
resid = FALSE,
discard.noise = FALSE,
MAPresids = FALSE,
use.y = TRUE,
...)

## S3 method for class 'MoEClust'
fitted(object,

...)

## S3 method for class 'MoEClust'
residuals(object,

newdata,
...)

Arguments

object An object of class "MoEClust" generated by MoE_clust, or an object of class
"MoECompare" generated by MoE_compare. Predictions for models with a noise
component are facilitated here too (see discard.noise).

newdata A list with two named components, each of which must be a data.frame or
matrix with named columns, giving the data for which predictions are desired.

new.x The new covariates for the gating &/or expert networks. Must be
supplied when newdata$new.y is supplied.

new.y (Optional) response data (see use.y below). When supplied, cluster and
response prediction is based on both newdata$new.x and newdata$new.y,
otherwise only on the covariates in newdata$new.x.

If supplied as a list with elements new.x and new.y, both must have the same
number of rows.
Alternatively, a single data.frame or matrix can be supplied and an attempt
will be made to extract & separate covariate and response columns (if any) into
newdata$new.x and newdata$new.y based on the variable names in object$data
and object$net.covs.
When newdata is not supplied in any way, the covariates and response variables
used in the fitting of the model are used here. It is possible to not supply new.y
and to supply an empty data.frame or matrix for new.x (or to equivalently
supply an empty data.frame or matrix for newdata itself) for models with
no covariates of any kind, which effectively predicts the weighted mean of the
component means.

resid A logical indicating whether to return the residuals also. Defaults to FALSE.
Only allowed when response variables are supplied in some form. The function
residuals is a wrapper to predict with the argument resid set to TRUE, with
only the residuals returned.
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discard.noise A logical governing how predictions of the responses are made for models with
a noise component (otherwise this argument is irrelevant). By default (FALSE),
the mean of the noise component is accounted for. Otherwise, or when the mean
of the noise component is unavailable (due to having been manually supplied
through MoE_control via noise.args$noise.vol), prediction of the responses
is performed using a z matrix which is renormalised after discarding the column
corresponding to the noise component. The renormalisation approach can be
forced by specifying TRUE, even when the mean of the noise component is avail-
able. For models with a noise component fitted with algo="CEM", a small extra
E-step is conducted for observations assigned to the non-noise components in
this case.

MAPresids A logical indicating whether residuals are computed against y (TRUE, the default)
or MAPy when FALSE. Not relevant for models with equal mixing proportions
when only new.x is available. See Value below for more details.

use.y A logical indicating whether the response variables (if any are supplied either
via new.y or via newdata itself) are actually used in the prediction. Defaults
to TRUE, but useful when FALSE for computing residuals as though only the co-
variates in new.x were supplied. For out-of-sample prediction, typically new.y
would not be supplied anyway and so the use.y=TRUE default becomes irrele-
vant.

... Catches unused arguments (and allows the predict arguments discard.noise
&/or use.y to be passed through fitted or the discard.noise, MAPresids,
and/or use.y arguments to be passed through residuals).

Details

Predictions can also be made for models with a noise component, in which case z will include the
probability of belonging to "Cluster0" & classification will include labels with the value 0 for
observations classified as noise (if any). The argument discard.noise governs how the responses
are predicted in the presence of a noise component (see noise_vol for more details).

Note that the argument discard.noise is invoked for any models with a noise component, while
the similar MoE_control argument noise.args$discard.noise is only invoked for models with
both a noise component and expert network covariates.

Please be aware that a model considered optimal from a clustering point of view may not neces-
sarily be optimal from a prediction point of view. In particular, full MoE models with covariates
in both networks (for which both the cluster membership probabilities and component means are
observation-specific) are recommended for out-of-sample prediction when only new covariates are
observed (see new.x and new.y above, as well as use.y).

Value

A list with the following named components, regardless of whether newdata$new.x and newdata$new.y
were used, or newdata$new.x only.

y Aggregated fitted values of the response variables.

z A matrix whose [i,k]-th entry is the probability that observation i of the newdata
belongs to the k-th component. For models with a noise component, the final
column gives the probability of belonging to the so-called Cluster0.
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classification The vector of predicted cluster labels for the newdata. 0 is returned for obser-
vations assigned to the noise component.

pro The predicted mixing proportions for the newdata, i.e. predicted values of the
gating network. object$parameters$pro is returned for models without gating
network covariates. See predict.MoE_gating.

mean The predicted component means for the newdata, i.e. predicted values of the
expert network. Given as a 3-dimensional array with dimensions given by the
number of new observations, the number of variables, and the number of clus-
ters. The first dimension is of length 1 when there are no expert network covari-
ates, in which case the entries correspond to object$parameters$mean. See
predict.MoE_expert.

MAPy Fitted values of the single expert network to which each observation is most
probably assigned. Not returned for models with equal mixing proportions when
only new.x is available. Likely to only be of use for models with gating and ex-
pert covariates when only new.x is supplied. Note that MAPy and y will coincide
for models fitted via the CEM algorithm (see MoE_control and its argument
algo).

When residuals is called, only the residuals (governed by MAPresids) are returned; when predict
is called with resid=TRUE, the list above will also contain the element resids, containing the resid-
uals.

The returned values of pro and mean are always the same, regardless of whether newdata$new.x
and newdata$new.y were used, or newdata$new.x only.

Finally, fitted is simply a wrapper to predict.MoEClust(object)$y without any newdata, and
with the resid and MAPresids arguments also ignored.

Note

Note that a dedicated predict function is also provided for objects of class "MoE_gating" (typi-
cally object$gating, where object is of class "MoEClust"). This function is effectively a short-
cut to predict(object, ...)$pro, which (unlike the predict method for multinom on which it is
based) accounts for the various ways of treating gating covariates and noise components, although
its type argument defaults to "probs" rather than "class". Notably, its keep.noise argument
behaves differently from the discard.noise argument here; here, the noise component is only
discarded in the computation of the predicted responses. See predict.MoE_gating for further
details.

Similarly, a dedicated predict function is also provided for objects of class "MoE_expert" (typi-
cally object$expert, where object is of class "MoE_expert"). This function is effectively a wrap-
per to predict(object, ...)$mean, albeit it returns a list (by default) rather than a 3-dimensional
array and also always preserves the dimensions of newdata, even for models without expert network
covariates. See predict.MoE_expert for further details.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>
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References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

See Also

MoE_clust, MoE_control, noise_vol, predict.MoE_gating, predict.MoE_expert

Examples

data(ais)
# Fit a MoEClust model and predict the same data
res <- MoE_clust(ais[,3:7], G=2, gating= ~ BMI, expert= ~ sex,

modelNames="EVE", network.data=ais)
pred1 <- predict(res)

# Get only the fitted responses
fits <- fitted(res)
all.equal(pred1$y, fits) #TRUE

# Remove some rows of the data for prediction purposes
ind <- sample(1:nrow(ais), 5)
dat <- ais[-ind,]

# Fit another MoEClust model to the retained data
res2 <- MoE_clust(dat[,3:7], G=3, gating= ~ BMI + sex,

modelNames="EEE", network.data=dat)

# Predict held back data using the covariates & response variables
(pred2 <- predict(res2, newdata=ais[ind,]))
# pred2 <- predict(res2, newdata=list(new.y=ais[ind,3:7],
# new.x=ais[ind,c("BMI", "sex")]))

# Get the residuals
residuals(res2, newdata=ais[ind,])

# Predict held back data using only the covariates
(pred3 <- predict(res2, newdata=ais[ind,], use.y=FALSE))
# pred3 <- predict(res2, newdata=list(new.x=ais[ind,c("BMI", "sex")]))
# pred3 <- predict(res2, newdata=ais[ind,c("BMI", "sex")])

predict.MoE_expert Predictions from MoEClust expert networks

Description

Predictions (point estimates) of observation-specific component means from each (non-noise) com-
ponent’s expert network linear regression.

https://doi.org/10.1007/s11634-019-00373-8
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Usage

## S3 method for class 'MoE_expert'
predict(object,

newdata = NULL,
simplify = FALSE,
droplevels = FALSE,
...)

## S3 method for class 'MoE_expert'
fitted(object,

...)

## S3 method for class 'MoE_expert'
residuals(object,

...)

Arguments

object An object of class "MoE_expert" (typically x$expert, where x is of class "MoEClust").

newdata A matrix or data frame of test examples. If omitted, the fitted values are used.

simplify Logical indicating whether to simplify the output (in the form of a list) to a 3-
dimensional array with dimensions given by the number of new observations,
the number of variables, and the number of clusters. The first dimension of such
an array is of length 1 when there are no expert network covariates, in which
case the entries correspond to object$parameters$mean. Defaults to FALSE.

droplevels A logical indicating whether unseen factor levels in categorical variables within
newdata should be dropped (with NA predicted in their place). Defaults to
FALSE. See drop_levels.

... Catches unused arguments or allows the simplify argument to be passed through
fitted and residuals.

Details

This function is effectively just a shortcut to lapply(x$expert, predict.lm, newdata=...). It
can also be thought of as a wrapper to predict.MoEClust(x, ...)$mean, although it returns a list
(by default) rather than a 3-dimensional array and also always preserves the dimensions of newdata,
even for models without expert network covariates.

Value

For simplify=FALSE, either a list of vectors or predictions (for univariate data) or a list of matrices
of predictions (for multivariate data). These lists are of the same length as number of non-noise
components in the fitted model. When simplify=TRUE, a 3-dimensional array of predictions is
returned, with respective dimensions given by the number of observations, variables, and non-noise
components.
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Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

See Also

predict.MoEClust, lm, predict.MoE_gating, drop_levels

Examples

data(CO2data)
res <- MoE_clust(CO2data$CO2, G=3, equalPro=TRUE, expert= ~ GNP, network.data=CO2data)
predict(res$expert)

# Try with newdata and simplify=TRUE
predict(res$expert, newdata=CO2data[1:5,"GNP", drop=FALSE], simplify=TRUE)

predict.MoE_gating Predictions from MoEClust gating networks

Description

Predicts mixing proportions from MoEClust gating networks. Effectively akin to predicting from a
multinomial logistic regression via multinom, although here the noise component (if any) is prop-
erly accounted for. So too are models with no gating covariates at all, or models with the equal
mixing proportion constraint. Prior probabilities are returned by default.

Usage

## S3 method for class 'MoE_gating'
predict(object,

newdata = NULL,
type = c("probs", "class"),
keep.noise = TRUE,
droplevels = FALSE,
...)

## S3 method for class 'MoE_gating'
fitted(object,

...)

## S3 method for class 'MoE_gating'
residuals(object,

...)
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Arguments

object An object of class "MoE_gating" (typically x$gating, where x is of class "MoEClust").

newdata A matrix or data frame of test examples. If omitted, the fitted values are used.

type The type of output desired. The default ("probs") returns prior probabilities,
while "class" returns labels indicating the most likely group a priori. Note
that observations classified assigned the noise component (if any) are given a
label of 0.

keep.noise A logical indicating whether the output should acknowledge the noise compo-
nent (if any). Defaults to TRUE; when FALSE, this column is discarded and the
matrix of probabilities is renormalised accordingly.

droplevels A logical indicating whether unseen factor levels in categorical variables within
newdata should be dropped (with NA predicted in their place). Defaults to
FALSE. See drop_levels.

... Catches unused arguments or allows the type and keep.noise arguments to
be passed through fitted and the keep.noise argument to be passed through
residuals.

Details

This function is effectively a shortcut to predict.MoEClust(x, ...)$pro, which (unlike the predict
method for multinom on which predict.MoE_gating is based) accounts for the various ways of
treating gating covariates, equal mixing proportion constraints, and noise components, although its
type argument defaults to "probs" rather than "class".

Value

The return value depends on whether newdata is supplied or not and whether the model includes
gating covariates to begin with. When newdata is not supplied, the fitted values are returned (as a
matrix if the model contained gating covariates, otherwise as a vector as per x$parameters$pro).
If newdata is supplied, the output is always a matrix with the same number of rows as the newdata.

Note

Note that the keep.noise argument does not correspond in any way to the discard.noise ar-
gument to predict.MoEClust; there, the noise component is respected in the computation of the
mixing proportions and only discarded (if at all) in the prediction of the responses.

Author(s)

Keefe Murphy - <<keefe.murphy@mu.ie>>

References

Murphy, K. and Murphy, T. B. (2020). Gaussian parsimonious clustering models with covari-
ates and a noise component. Advances in Data Analysis and Classification, 14(2): 293-325.
<doi:10.1007/s11634019003738>.

https://doi.org/10.1007/s11634-019-00373-8
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See Also

predict.MoEClust, multinom, predict.MoE_expert, drop_levels

Examples

data(ais)
mod <- MoE_clust(ais[,3:7], G=2, modelNames="EEE", gating= ~ SSF + Ht,

expert= ~ sex, network.data=ais, tau0=0.1, noise.gate=FALSE)
(preds <- predict(mod$gating, newdata=ais[1:5,]))

all.equal(preds, predict(mod, newdata=ais[1:5,])$pro) #TRUE

# Note that the predictions are not the same as the multinom predict method
# in this instance, owing to the invocation of noise.gate=FALSE above
mod2 <- mod
class(mod2$gating) <- c("multinom", "nnet")
predict(mod2$gating, newdata=ais[1:5,], type="probs")

# We can make this function behave in the same way by invoking keep.noise=FALSE
predict(mod$gating, keep.noise=FALSE, newdata=ais[1:5,])

# ... although keep.noise=FALSE in predict.MoE_gating does not
# yield the same output as discard.noise=TRUE in predict.MoEClust
predict(mod, discard.noise=TRUE, newdata=ais[1:5,])$pro

quant_clust Quantile-Based Clustering for Univariate Data

Description

Returns a quantile-based clustering for univariate data.

Usage

quant_clust(x,
G)

Arguments

x A vector of numeric data.
G The desired number of clusters.

Value

The vector of cluster labels.

Examples

data(CO2data)
quant_clust(CO2data$CO2, G=2)
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